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dog (sampling)

e Density estimation: p(x) should be high if x looks like a dog,
and low otherwise (anomaly detection)
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learn what these images have in common, e.g., ears, tail, etc.
(features)

e First question: how to represent py(x). Second question: how to
learn it. 2/26
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e We are given a dataset D of m samples from Pga¢a
e Each sample is an assignment of values to the variables, e.g.,
(Xbank = 1, Xdontar = 0, ..., Y = 1) or pixel intensities.
e The standard assumption is that the data instances are
independent and identically distributed (11D)

e We are also given a family of models M, and our task is to learn
parameters 6 of some “good” model Py € M
e For example, all Bayes nets with a given graph structure, for
all possible choices of the CPD tables
e For example, a FVSBN for all possible choices of the logistic
regression parameters. M = {Py,0 € ©}, § = concatenation
of all logistic regression coefficients
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e The goal of learning is to return a model Py that precisely captures
the distribution Pg,t, from which our data was sampled

e This is in general not achievable because of

e limited data only provides a rough approximation of the true
underlying distribution
e computational reasons

e Example. Suppose we represent each image with a vector X of 784
binary variables (black vs. white pixel). How many possible states
(= possible images) in the model? 2784 ~ 1023¢. Even 107 training
examples provide extremely sparse coverage!

e We want to select Py to construct the "best” approximation to the
underlying distribution Pqaga

e What is “best”?
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This depends on what we want to do

1. Density estimation: we are interested in the full distribution (so
later we can compute whatever conditional probabilities we want)

2. Specific prediction tasks: we are using the distribution to make a

prediction

e |s this email spam or not?
e Predict next frame in a video

3. Structure or knowledge discovery: we are interested in the model
itself

e How do some genes interact with each other?
e What causes cancer?
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KL-divergence

e How should we measure distance between distributions?
e The Kullback-Leibler divergence (KL-divergence) between
two distributions p and g is defined as

X
)i
D(pllq) = Zp og 2% )

e D(p|lg) > 0 for all p,q, with equality if and only if p = g.
Proof:

B {f log %} > —log <Ex~p {%D = —log (Z p(x)"Ei) =

o Notice that KL-divergence is asymmetric, i.e.,
D(plla) # D(qllp)

e Measures the expected number of extra bits required to
describe samples from p(x) using a code based on ¢ instead

of p 7/26
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Detour on KL-divergence

e Knowledge of the data distribution aids compression

e For example, let Xi, -+, X100 be samples of an unbiased coin.
Roughly 50 heads and 50 tails. Optimal compression scheme
is to record heads as 0 and tails as 1. In expectation, use 1 bit

per sample, and cannot do better
e Suppose the coin is biased, and P[H] > P[T]. Then it's more
efficient to uses fewer bits on average to represent heads and
more bits to represent tails, e.g.
e Batch multiple samples together
e Use a short sequence of bits to encode HHHH (common) and
a long sequence for TTTT (rare).
o Like Morse code: E=9o, A=0e—, Q = — — o—
e Kl-divergence: if your data comes from p, but you use a
scheme optimized for g, the divergence Dk, (pl||q) is the
number of extra bits you'll need on average
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e The first term does not depend on Py.

e Then, minimizing KL divergence is equivalent to maximizing the
expected log-likelihood
e Asks that Py assign high probability to instances sampled from
Piata, SO as to reflect the true distribution
e Because of log, samples x where Py(x) =~ 0 weigh heavily in
objective

e Although we can now compare models, since we are ignoring
H(Paiata), we don't know how close we are to the optimum

e Problem: In general we do not know Pg,¢..
10/26
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Maximum likelihood

e Approximate the expected log-likelihood

ExPiaca [l0g Po(x)]

with the empirical log-likelihood.

Ep [log Py(x = Z log Py(x
x€D

e Maximum likelihood Iearning is then:

max @ Z log Py(x

e Equivalently, maximize likelihood of the data
Py(x(), ... x(m) = [Teep Po(x)

11/26
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Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of
a random variable.

Explg(x)] = g(x)P(x)

2. Generate T samples x!,...,x" from the distribution P with
respect to which the expectation was taken.

3. Estimate the expected value from the samples using:

T

R 1

g(xlv"' aXT) = ?Zg(xt)
=il

T

where x, ..., x" are independent samples from P. Note: g is

a random variable. Why?
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Properties of the Monte Carlo Estimate

e Unbiased:
Ep[g] = Eplg(x)]

e Convergence: By law of large numbers

Z ) = Eplg(x)] for T — oo

e Variance:

_ Velg(x)]
T

Velg] = [ Zg

Thus, variance of the estimator can be reduced by increasing

the number of samples.
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Single variable example: A biased coin

e Two outcomes: heads (H) and tails (T)

e Data set: Tosses of the biased coin, e.g.,
D={H,H, T,H, T}

e Assumption: the process is controlled by a probability
distribution Pgata(x) where x € {H, T}

e Class of models M: all probability distributions over
xe{H, T}.

e Example learning task: How should we choose Py(x) from M
if 60 out of 100 tosses are heads in D7

14 /26



MLE scoring for the coin example

We represent our model: Pg(x = H) =60 and Py(x =T)=1-16

15 /26



MLE scoring for the coin example

We represent our model: Pg(x = H) =60 and Py(x =T)=1-16

e Example data: D ={H,H,T,H, T}

15 /26



MLE scoring for the coin example

We represent our model: Pg(x = H) =60 and Py(x =T)=1-16

e Example data: D={H,H, T,H, T}
e Likelihood of data = [[; Pg(xj) =0-60-(1—6)-0-(1—6)

15 /26



MLE scoring for the coin example

We represent our model: Pg(x = H) =60 and Py(x =T)=1-16

e Example data: D={H,H, T,H, T}
e Likelihood of data = [[; Pg(xj) =0-60-(1—6)-0-(1—6)

L(6:D)

0 0.2 0.4 0.6 0.8 1
2]

e Optimize for # which makes D most likely. What is the

solution in this case?
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n
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0 = (01, ,0,) are the parameters of all the conditionals.
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Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization
n
PO(X) = H pneural(xi|x<i; 9/)
i=1

0 = (01, ,0,) are the parameters of all the conditionals.
Training data D = {xM), ... x(M}  Maximum likelihood estimate

of the parameters 07
e Decomposition of Likelihood function
L(Ha D) = H P@(X(’I)) = H H pneural(x,'(j)|x(i);; ‘91)
=1 j=1i=1
e Goal : maximize arg maxy L(6, D) = arg maxg log L(6, D)

e We no longer have a closed form solution
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MLE Learning: Gradient Descent

[_((9 D) = ﬁ H H pneurdl 9 )

j=1i=1
Goal : maximize arg maxy L(6, D) = arg maxg log L(0, D)

n

E(Q) |OgL (9 D ZZ'ngneural J ’ 2219)
Jj=1i=1

1. Initialize #° = (61,--- ,6,) at random
2. Compute Vy/l(6) (by back propagation)
3. 01 = 0t + 4, Vyl(0)

Non-convex optimization problem, but often works well in practice
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m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)
j=1 i=1
1. Initialize #° at random
2. Compute Vy/(0) (by back propagation)
3. 0t = 0t + a, Vel(0)

What is the gradient with respect to 6,7
m
VG é Z VH Z |0g pneuml i),y 6 Z VG; |0g pneural(X,'(J) ‘X(é),'; 91)
i= j=1
Each conditional ppeural(Xi|x<;; 0;) can be optimized separately if there is

no parameter sharing. In practice, parameters 0; are shared (e.g., NADE,
PixelRNN, PixelCNN, etc.)
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e Empirical risk minimization can easily overfit the data

e Extreme example: The data is the model (remember all
training data).

e Generalization: the data is a sample, usually there is vast amount of
samples that you have never seen. Your model should generalize

well to these “never-seen” samples.

e Thus, we typically restrict the hypothesis space of distributions
that we search over
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e There is an inherent bias-variance trade off when selecting the
hypothesis class. Error in learning due to both things: bias and

variance.
e Hypothesis space: linear relationship
e Does it fit well? Underfits o = o

e Hypothesis space: high degree polynomial

e Overfits

e Hypothesis space: low degree polynomial

{,

e Right tradeoff
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How to avoid overfitting?

e Hard constraints, e.g. by selecting a less expressive model family:

e Smaller neural networks with less parameters
e Weight sharing

d(Paata P o)

P data

xD~Pgata 0EM

j=12,...,m

e Soft preference for “simpler’ models: Occam Razor.

e Augment the objective function with regularization:
objective(x, M) = loss(x, M) + R(M)

e Evaluate generalization performance on a held-out validation set

24 /26
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grass field
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e For autoregressive models, it is easy to compute py(x)

e |deally, evaluate in parallel each conditional
log pncural(X,'(J)‘Xg),-; 0;). Not like RNNs.

e Natural to train them via maximum likelihood

e Higher log-likelihood doesn’t necessarily mean better looking
samples

e Other ways of measuring similarity are possible (Generative
Adversarial Networks, GANs)
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