Deep Generative Models
 Lecture 4: Maximum Likelihood Learning

Aditya Grover
UCLA

Learning a generative model

- Given: a training set of examples, e.g., images of dogs

Learning a generative model

- Given: a training set of examples, e.g., images of dogs

- Goal: learn a probability distribution $p(x)$ over images x
- Generation: If we sample $x_{\text {new }} \sim p(x), x_{\text {new }}$ should look like a dog (sampling)
- Density estimation: $p(x)$ should be high if x looks like a dog, and low otherwise (anomaly detection)
- Unsupervised representation learning: We should be able to learn what these images have in common, e.g., ears, tail, etc. (features)
- First question: how to represent $p_{\theta}(x)$.

Learning a generative model

- Given: a training set of examples, e.g., images of dogs

- Goal: learn a probability distribution $p(x)$ over images x
- Generation: If we sample $x_{\text {new }} \sim p(x), x_{\text {new }}$ should look like a dog (sampling)
- Density estimation: $p(x)$ should be high if x looks like a dog, and low otherwise (anomaly detection)
- Unsupervised representation learning: We should be able to learn what these images have in common, e.g., ears, tail, etc. (features)
- First question: how to represent $p_{\theta}(x)$. Second question: how to learn it.

Setting

- Lets assume that the domain is governed by some underlying distribution $P_{\text {data }}$
- We are given a dataset \mathcal{D} of m samples from $P_{\text {data }}$

Setting

- Lets assume that the domain is governed by some underlying distribution $P_{\text {data }}$
- We are given a dataset \mathcal{D} of m samples from $P_{\text {data }}$
- Each sample is an assignment of values to the variables, e.g., $\left(X_{\text {bank }}=1, X_{\text {dollar }}=0, \ldots, Y=1\right)$ or pixel intensities.

Setting

- Lets assume that the domain is governed by some underlying distribution $P_{\text {data }}$
- We are given a dataset \mathcal{D} of m samples from $P_{\text {data }}$
- Each sample is an assignment of values to the variables, e.g., $\left(X_{\text {bank }}=1, X_{\text {dollar }}=0, \ldots, Y=1\right)$ or pixel intensities.
- The standard assumption is that the data instances are independent and identically distributed (IID)

Setting

- Lets assume that the domain is governed by some underlying distribution $P_{\text {data }}$
- We are given a dataset \mathcal{D} of m samples from $P_{\text {data }}$
- Each sample is an assignment of values to the variables, e.g., $\left(X_{\text {bank }}=1, X_{\text {dollar }}=0, \ldots, Y=1\right)$ or pixel intensities.
- The standard assumption is that the data instances are independent and identically distributed (IID)
- We are also given a family of models \mathcal{M}, and our task is to learn parameters θ of some "good" model $P_{\theta} \in \mathcal{M}$
- For example, all Bayes nets with a given graph structure, for all possible choices of the CPD tables

Setting

- Lets assume that the domain is governed by some underlying distribution $P_{\text {data }}$
- We are given a dataset \mathcal{D} of m samples from $P_{\text {data }}$
- Each sample is an assignment of values to the variables, e.g., $\left(X_{\text {bank }}=1, X_{\text {dollar }}=0, \ldots, Y=1\right)$ or pixel intensities.
- The standard assumption is that the data instances are independent and identically distributed (IID)
- We are also given a family of models \mathcal{M}, and our task is to learn parameters θ of some "good" model $P_{\theta} \in \mathcal{M}$
- For example, all Bayes nets with a given graph structure, for all possible choices of the CPD tables
- For example, a FVSBN for all possible choices of the logistic regression parameters.

Setting

- Lets assume that the domain is governed by some underlying distribution $P_{\text {data }}$
- We are given a dataset \mathcal{D} of m samples from $P_{\text {data }}$
- Each sample is an assignment of values to the variables, e.g., $\left(X_{\text {bank }}=1, X_{\text {dollar }}=0, \ldots, Y=1\right)$ or pixel intensities.
- The standard assumption is that the data instances are independent and identically distributed (IID)
- We are also given a family of models \mathcal{M}, and our task is to learn parameters θ of some "good" model $P_{\theta} \in \mathcal{M}$
- For example, all Bayes nets with a given graph structure, for all possible choices of the CPD tables
- For example, a FVSBN for all possible choices of the logistic regression parameters. $\mathcal{M}=\left\{P_{\theta}, \theta \in \Theta\right\}, \theta=$ concatenation of all logistic regression coefficients

Goal of learning

- The goal of learning is to return a model P_{θ} that precisely captures the distribution $P_{\text {data }}$ from which our data was sampled

Goal of learning

- The goal of learning is to return a model P_{θ} that precisely captures the distribution $P_{\text {data }}$ from which our data was sampled
- This is in general not achievable because of
- limited data only provides a rough approximation of the true underlying distribution
- computational reasons

Goal of learning

- The goal of learning is to return a model P_{θ} that precisely captures the distribution $P_{\text {data }}$ from which our data was sampled
- This is in general not achievable because of
- limited data only provides a rough approximation of the true underlying distribution
- computational reasons
- Example. Suppose we represent each image with a vector X of 784 binary variables (black vs. white pixel).

Goal of learning

- The goal of learning is to return a model P_{θ} that precisely captures the distribution $P_{\text {data }}$ from which our data was sampled
- This is in general not achievable because of
- limited data only provides a rough approximation of the true underlying distribution
- computational reasons
- Example. Suppose we represent each image with a vector X of 784 binary variables (black vs. white pixel). How many possible states (= possible images) in the model?

Goal of learning

- The goal of learning is to return a model P_{θ} that precisely captures the distribution $P_{\text {data }}$ from which our data was sampled
- This is in general not achievable because of
- limited data only provides a rough approximation of the true underlying distribution
- computational reasons
- Example. Suppose we represent each image with a vector X of 784 binary variables (black vs. white pixel). How many possible states ($=$ possible images) in the model? $2^{784} \approx 10^{236}$.

Goal of learning

- The goal of learning is to return a model P_{θ} that precisely captures the distribution $P_{\text {data }}$ from which our data was sampled
- This is in general not achievable because of
- limited data only provides a rough approximation of the true underlying distribution
- computational reasons
- Example. Suppose we represent each image with a vector X of 784 binary variables (black vs. white pixel). How many possible states ($=$ possible images) in the model? $2^{784} \approx 10^{236}$. Even 10^{7} training examples provide extremely sparse coverage!

Goal of learning

- The goal of learning is to return a model P_{θ} that precisely captures the distribution $P_{\text {data }}$ from which our data was sampled
- This is in general not achievable because of
- limited data only provides a rough approximation of the true underlying distribution
- computational reasons
- Example. Suppose we represent each image with a vector X of 784 binary variables (black vs. white pixel). How many possible states ($=$ possible images) in the model? $2^{784} \approx 10^{236}$. Even 10^{7} training examples provide extremely sparse coverage!
- We want to select P_{θ} to construct the "best" approximation to the underlying distribution $P_{\text {data }}$

Goal of learning

- The goal of learning is to return a model P_{θ} that precisely captures the distribution $P_{\text {data }}$ from which our data was sampled
- This is in general not achievable because of
- limited data only provides a rough approximation of the true underlying distribution
- computational reasons
- Example. Suppose we represent each image with a vector X of 784 binary variables (black vs. white pixel). How many possible states ($=$ possible images) in the model? $2^{784} \approx 10^{236}$. Even 10^{7} training examples provide extremely sparse coverage!
- We want to select P_{θ} to construct the "best" approximation to the underlying distribution $P_{\text {data }}$
- What is "best"?

What is "best"?

This depends on what we want to do

1. Density estimation: we are interested in the full distribution (so later we can compute whatever conditional probabilities we want)

What is "best"?

This depends on what we want to do

1. Density estimation: we are interested in the full distribution (so later we can compute whatever conditional probabilities we want)
2. Specific prediction tasks: we are using the distribution to make a prediction

- Is this email spam or not?
- Predict next frame in a video

What is "best"?

This depends on what we want to do

1. Density estimation: we are interested in the full distribution (so later we can compute whatever conditional probabilities we want)
2. Specific prediction tasks: we are using the distribution to make a prediction

- Is this email spam or not?
- Predict next frame in a video

3. Structure or knowledge discovery: we are interested in the model itself

- How do some genes interact with each other?
- What causes cancer?

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\text {data }}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\text {data }}$)

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\text {data }}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\text {data }}$)

$$
\begin{gathered}
x^{(j)} \sim P_{\text {data }} \\
j=1,2, \ldots, m
\end{gathered}
$$

$\boldsymbol{\theta} \in \boldsymbol{M}$

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\text {data }}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\text {data }}$)

$$
\begin{gathered}
\boldsymbol{x}^{(j)} \sim \boldsymbol{P}_{\text {data }} \\
j=1,2, \ldots, m
\end{gathered}
$$

$\boldsymbol{\theta} \in \boldsymbol{M}$

- How do we evaluate "closeness"?

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\text {data }}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\text {data }}$)

$$
\begin{gathered}
\boldsymbol{x}^{(j)} \sim \boldsymbol{P}_{\text {data }} \\
j=1,2, \ldots, m
\end{gathered}
$$

$\boldsymbol{\theta} \in \boldsymbol{M}$

- How do we evaluate "closeness"?

KL-divergence

- How should we measure distance between distributions?

KL-divergence

- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distributions p and q is defined as

$$
D(p \| q)=\sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}
$$

KL-divergence

- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distributions p and q is defined as

$$
D(p \| q)=\sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}
$$

- $D(p \| q) \geq 0$ for all p, q, with equality if and only if $p=q$.

KL-divergence

- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distributions p and q is defined as

$$
D(p \| q)=\sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}
$$

- $D(p \| q) \geq 0$ for all p, q, with equality if and only if $p=q$. Proof:

$$
\mathbf{E}_{\mathbf{x} \sim p}\left[-\log \frac{q(\mathbf{x})}{p(\mathbf{x})}\right]
$$

KL-divergence

- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distributions p and q is defined as

$$
D(p \| q)=\sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}
$$

- $D(p \| q) \geq 0$ for all p, q, with equality if and only if $p=q$. Proof:

$$
\mathbf{E}_{\mathbf{x} \sim p}\left[-\log \frac{q(\mathbf{x})}{p(\mathbf{x})}\right] \geq-\log \left(\mathbf{E}_{\mathbf{x} \sim p}\left[\frac{q(\mathbf{x})}{p(\mathbf{x})}\right]\right)
$$

KL-divergence

- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distributions p and q is defined as

$$
D(p \| q)=\sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}
$$

- $D(p \| q) \geq 0$ for all p, q, with equality if and only if $p=q$. Proof:

$$
\mathrm{E}_{\mathrm{x} \sim p}\left[-\log \frac{q(\mathrm{x})}{p(\mathrm{x})}\right] \geq-\log \left(\mathrm{E}_{\mathrm{x} \sim p}\left[\frac{q(\mathrm{x})}{p(\mathrm{x})}\right]\right)=-\log \left(\sum_{\mathrm{x}} p(\mathrm{x}) \frac{q(\mathrm{x})}{p(\mathrm{x})}\right)
$$

KL-divergence

- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distributions p and q is defined as

$$
D(p \| q)=\sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}
$$

- $D(p \| q) \geq 0$ for all p, q, with equality if and only if $p=q$. Proof:

$$
\mathrm{E}_{\mathrm{x} \sim p}\left[-\log \frac{q(\mathrm{x})}{p(\mathrm{x})}\right] \geq-\log \left(\mathrm{E}_{\mathrm{x} \sim p}\left[\frac{q(\mathrm{x})}{p(\mathrm{x})}\right]\right)=-\log \left(\sum_{\mathrm{x}} p(\mathrm{x}) \frac{q(\mathrm{x})}{p(\mathrm{x})}\right)=0
$$

KL-divergence

- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distributions p and q is defined as

$$
D(p \| q)=\sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}
$$

- $D(p \| q) \geq 0$ for all p, q, with equality if and only if $p=q$. Proof:

$$
\mathrm{E}_{\mathrm{x} \sim p}\left[-\log \frac{q(\mathrm{x})}{p(\mathrm{x})}\right] \geq-\log \left(\mathrm{E}_{\mathrm{x} \sim p}\left[\frac{q(\mathrm{x})}{p(\mathrm{x})}\right]\right)=-\log \left(\sum_{\mathrm{x}} p(\mathrm{x}) \frac{q(\mathrm{x})}{p(\mathrm{x})}\right)=0
$$

- Notice that KL-divergence is asymmetric, i.e., $D(p \| q) \neq D(q \| p)$

KL-divergence

- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distributions p and q is defined as

$$
D(p \| q)=\sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}
$$

- $D(p \| q) \geq 0$ for all p, q, with equality if and only if $p=q$. Proof:

$$
\mathrm{E}_{\mathrm{x} \sim p}\left[-\log \frac{q(\mathrm{x})}{p(\mathrm{x})}\right] \geq-\log \left(\mathrm{E}_{\mathrm{x} \sim p}\left[\frac{q(\mathrm{x})}{p(\mathrm{x})}\right]\right)=-\log \left(\sum_{\mathrm{x}} p(\mathrm{x}) \frac{q(\mathrm{x})}{p(\mathrm{x})}\right)=0
$$

- Notice that KL-divergence is asymmetric, i.e., $D(p \| q) \neq D(q \| p)$
- Measures the expected number of extra bits required to describe samples from $p(\mathbf{x})$ using a code based on q instead of p

Detour on KL-divergence

- Knowledge of the data distribution aids compression

Detour on KL-divergence

- Knowledge of the data distribution aids compression
- For example, let X_{1}, \cdots, X_{100} be samples of an unbiased coin. Roughly 50 heads and 50 tails. Optimal compression scheme is to record heads as 0 and tails as 1 . In expectation, use 1 bit per sample, and cannot do better

Detour on KL-divergence

- Knowledge of the data distribution aids compression
- For example, let X_{1}, \cdots, X_{100} be samples of an unbiased coin. Roughly 50 heads and 50 tails. Optimal compression scheme is to record heads as 0 and tails as 1 . In expectation, use 1 bit per sample, and cannot do better
- Suppose the coin is biased, and $P[H] \gg P[T]$.

Detour on KL-divergence

- Knowledge of the data distribution aids compression
- For example, let X_{1}, \cdots, X_{100} be samples of an unbiased coin. Roughly 50 heads and 50 tails. Optimal compression scheme is to record heads as 0 and tails as 1 . In expectation, use 1 bit per sample, and cannot do better
- Suppose the coin is biased, and $P[H] \gg P[T]$. Then it's more efficient to uses fewer bits on average to represent heads and more bits to represent tails, e.g.
- Batch multiple samples together
- Use a short sequence of bits to encode HHHH (common) and a long sequence for TTTT (rare).
- Like Morse code: $E=\bullet, A=\bullet-, Q=--\bullet-$

Detour on KL-divergence

- Knowledge of the data distribution aids compression
- For example, let X_{1}, \cdots, X_{100} be samples of an unbiased coin. Roughly 50 heads and 50 tails. Optimal compression scheme is to record heads as 0 and tails as 1 . In expectation, use 1 bit per sample, and cannot do better
- Suppose the coin is biased, and $P[H] \gg P[T]$. Then it's more efficient to uses fewer bits on average to represent heads and more bits to represent tails, e.g.
- Batch multiple samples together
- Use a short sequence of bits to encode HHHH (common) and a long sequence for TTTT (rare).
- Like Morse code: $E=\bullet, A=\bullet-, Q=--\bullet-$
- KL-divergence: if your data comes from p, but you use a scheme optimized for q, the divergence $D_{K L}(p \| q)$ is the number of extra bits you'll need on average

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\text {data }}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\text {data }}$)
- How do we evaluate "closeness"?

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\text {data }}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\text {data }}$)
- How do we evaluate "closeness"?
- KL-divergence is one possibility:

$$
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right)=\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right]
$$

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\text {data }}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\text {data }}$)
- How do we evaluate "closeness"?
- KL-divergence is one possibility:

$$
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right)=\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right]=\sum_{\mathbf{x}} P_{\text {data }}(\mathbf{x}) \log \frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}
$$

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\text {data }}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\text {data }}$)
- How do we evaluate "closeness"?
- KL-divergence is one possibility:

$$
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right)=\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right]=\sum_{\mathbf{x}} P_{\text {data }}(\mathbf{x}) \log \frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}
$$

- $\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right)=0$ iff the two distributions are the same.

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\text {data }}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\text {data }}$)
- How do we evaluate "closeness"?
- KL-divergence is one possibility:

$$
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right)=\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right]=\sum_{\mathbf{x}} P_{\mathrm{data}}(\mathbf{x}) \log \frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}
$$

- $\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right)=0$ iff the two distributions are the same.
- It measures the "compression loss" (in bits) of using P_{θ} instead of $P_{\text {data }}$.

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\text {data }}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\text {data }}$)
- How do we evaluate "closeness"?
- KL-divergence is one possibility:

$$
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right)=\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right]=\sum_{\mathbf{x}} P_{\mathrm{data}}(\mathbf{x}) \log \frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}
$$

- $\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right)=0$ iff the two distributions are the same.
- It measures the "compression loss" (in bits) of using P_{θ} instead of $P_{\text {data }}$.

Expected log-likelihood

- We can simplify this somewhat:

$$
\begin{aligned}
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right) & =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right] \\
& =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\text {data }}(\mathbf{x})\right]-\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\theta}(\mathbf{x})\right]
\end{aligned}
$$

Expected log-likelihood

- We can simplify this somewhat:

$$
\begin{aligned}
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right) & =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right] \\
& =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\text {data }}(\mathbf{x})\right]-\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\theta}(\mathbf{x})\right]
\end{aligned}
$$

- The first term does not depend on P_{θ}.

Expected log-likelihood

- We can simplify this somewhat:

$$
\begin{aligned}
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right) & =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right] \\
& =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\text {data }}(\mathbf{x})\right]-\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\theta}(\mathbf{x})\right]
\end{aligned}
$$

- The first term does not depend on P_{θ}.
- Then, minimizing KL divergence is equivalent to maximizing the expected log-likelihood

Expected log-likelihood

- We can simplify this somewhat:

$$
\begin{aligned}
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right) & =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right] \\
& =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\text {data }}(\mathbf{x})\right]-\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\theta}(\mathbf{x})\right]
\end{aligned}
$$

- The first term does not depend on P_{θ}.
- Then, minimizing KL divergence is equivalent to maximizing the expected log-likelihood
- Asks that P_{θ} assign high probability to instances sampled from $P_{\text {data }}$, so as to reflect the true distribution

Expected log-likelihood

- We can simplify this somewhat:

$$
\begin{aligned}
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right) & =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right] \\
& =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\text {data }}(\mathbf{x})\right]-\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\theta}(\mathbf{x})\right]
\end{aligned}
$$

- The first term does not depend on P_{θ}.
- Then, minimizing KL divergence is equivalent to maximizing the expected log-likelihood
- Asks that P_{θ} assign high probability to instances sampled from $P_{\text {data }}$, so as to reflect the true distribution
- Because of log, samples \mathbf{x} where $P_{\theta}(\mathbf{x}) \approx 0$ weigh heavily in objective

Expected log-likelihood

- We can simplify this somewhat:

$$
\begin{aligned}
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right) & =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right] \\
& =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\text {data }}(\mathbf{x})\right]-\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\theta}(\mathbf{x})\right]
\end{aligned}
$$

- The first term does not depend on P_{θ}.
- Then, minimizing KL divergence is equivalent to maximizing the expected log-likelihood
- Asks that P_{θ} assign high probability to instances sampled from $P_{\text {data }}$, so as to reflect the true distribution
- Because of log, samples \mathbf{x} where $P_{\theta}(\mathbf{x}) \approx 0$ weigh heavily in objective
- Although we can now compare models, since we are ignoring $\mathbf{H}\left(P_{\text {data }}\right)$, we don't know how close we are to the optimum

Expected log-likelihood

- We can simplify this somewhat:

$$
\begin{aligned}
\mathbf{D}\left(P_{\text {data }} \| P_{\theta}\right) & =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log \left(\frac{P_{\text {data }}(\mathbf{x})}{P_{\theta}(\mathbf{x})}\right)\right] \\
& =\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\text {data }}(\mathbf{x})\right]-\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\theta}(\mathbf{x})\right]
\end{aligned}
$$

- The first term does not depend on P_{θ}.
- Then, minimizing KL divergence is equivalent to maximizing the expected log-likelihood
- Asks that P_{θ} assign high probability to instances sampled from $P_{\text {data }}$, so as to reflect the true distribution
- Because of log, samples \mathbf{x} where $P_{\theta}(\mathbf{x}) \approx 0$ weigh heavily in objective
- Although we can now compare models, since we are ignoring $\mathbf{H}\left(P_{\text {data }}\right)$, we don't know how close we are to the optimum
- Problem: In general we do not know $P_{\text {data }}$.

Maximum likelihood

- Approximate the expected log-likelihood

$$
\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\theta}(\mathbf{x})\right]
$$

with the empirical log-likelihood:

$$
\mathbf{E}_{\mathcal{D}}\left[\log P_{\theta}(\mathbf{x})\right]=\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log P_{\theta}(\mathbf{x})
$$

Maximum likelihood

- Approximate the expected log-likelihood

$$
\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\theta}(\mathbf{x})\right]
$$

with the empirical log-likelihood:

$$
\mathbf{E}_{\mathcal{D}}\left[\log P_{\theta}(\mathbf{x})\right]=\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log P_{\theta}(\mathbf{x})
$$

- Maximum likelihood learning is then:

$$
\max _{P_{\theta}} \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log P_{\theta}(\mathbf{x})
$$

Maximum likelihood

- Approximate the expected log-likelihood

$$
\mathbf{E}_{\mathbf{x} \sim P_{\text {data }}}\left[\log P_{\theta}(\mathbf{x})\right]
$$

with the empirical log-likelihood:

$$
\mathbf{E}_{\mathcal{D}}\left[\log P_{\theta}(\mathbf{x})\right]=\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log P_{\theta}(\mathbf{x})
$$

- Maximum likelihood learning is then:

$$
\max _{P_{\theta}} \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log P_{\theta}(\mathbf{x})
$$

- Equivalently, maximize likelihood of the data

$$
P_{\theta}\left(\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)}\right)=\prod_{\mathbf{x} \in \mathcal{D}} P_{\theta}(\mathbf{x})
$$

Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of a random variable.

$$
E_{x \sim P}[g(x)]=\sum_{x} g(x) P(x)
$$

Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of a random variable.

$$
E_{x \sim P}[g(x)]=\sum_{x} g(x) P(x)
$$

2. Generate T samples $\mathbf{x}^{1}, \ldots, \mathbf{x}^{T}$ from the distribution P with respect to which the expectation was taken.

Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of a random variable.

$$
E_{x \sim P}[g(x)]=\sum_{x} g(x) P(x)
$$

2. Generate T samples $\mathbf{x}^{1}, \ldots, \mathbf{x}^{T}$ from the distribution P with respect to which the expectation was taken.
3. Estimate the expected value from the samples using:

$$
\hat{g}\left(\mathbf{x}^{1}, \cdots, \mathbf{x}^{T}\right) \triangleq \frac{1}{T} \sum_{t=1}^{T} g\left(\mathbf{x}^{t}\right)
$$

where $\mathbf{x}^{1}, \ldots, \mathbf{x}^{T}$ are independent samples from P.

Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of a random variable.

$$
E_{x \sim P}[g(x)]=\sum_{x} g(x) P(x)
$$

2. Generate T samples $\mathbf{x}^{1}, \ldots, \mathbf{x}^{T}$ from the distribution P with respect to which the expectation was taken.
3. Estimate the expected value from the samples using:

$$
\hat{g}\left(\mathbf{x}^{1}, \cdots, \mathbf{x}^{T}\right) \triangleq \frac{1}{T} \sum_{t=1}^{T} g\left(\mathbf{x}^{t}\right)
$$

where $\mathbf{x}^{1}, \ldots, \mathbf{x}^{T}$ are independent samples from P. Note: \hat{g} is a random variable.

Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of a random variable.

$$
E_{x \sim P}[g(x)]=\sum_{x} g(x) P(x)
$$

2. Generate T samples $\mathbf{x}^{1}, \ldots, \mathbf{x}^{T}$ from the distribution P with respect to which the expectation was taken.
3. Estimate the expected value from the samples using:

$$
\hat{g}\left(\mathbf{x}^{1}, \cdots, \mathbf{x}^{T}\right) \triangleq \frac{1}{T} \sum_{t=1}^{T} g\left(\mathbf{x}^{t}\right)
$$

where $\mathbf{x}^{1}, \ldots, \mathbf{x}^{T}$ are independent samples from P. Note: \hat{g} is a random variable. Why?

Properties of the Monte Carlo Estimate

- Unbiased:

$$
E_{P}[\hat{g}]=E_{P}[g(x)]
$$

Properties of the Monte Carlo Estimate

- Unbiased:

$$
E_{P}[\hat{g}]=E_{P}[g(x)]
$$

- Convergence: By law of large numbers

$$
\hat{g}=\frac{1}{T} \sum_{t=1}^{T} g\left(x^{t}\right) \rightarrow E_{P}[g(x)] \text { for } T \rightarrow \infty
$$

Properties of the Monte Carlo Estimate

- Unbiased:

$$
E_{P}[\hat{g}]=E_{P}[g(x)]
$$

- Convergence: By law of large numbers

$$
\hat{g}=\frac{1}{T} \sum_{t=1}^{T} g\left(x^{t}\right) \rightarrow E_{P}[g(x)] \text { for } T \rightarrow \infty
$$

- Variance:

$$
V_{P}[\hat{g}]=V_{P}\left[\frac{1}{T} \sum_{t=1}^{T} g\left(x^{t}\right)\right]=\frac{V_{P}[g(x)]}{T}
$$

Thus, variance of the estimator can be reduced by increasing the number of samples.

Example

Single variable example: A biased coin

- Two outcomes: heads (H) and tails (T)

Example

Single variable example: A biased coin

- Two outcomes: heads (H) and tails (T)
- Data set: Tosses of the biased coin, e.g., $\mathcal{D}=\{H, H, T, H, T\}$

Example

Single variable example: A biased coin

- Two outcomes: heads (H) and tails (T)
- Data set: Tosses of the biased coin, e.g., $\mathcal{D}=\{H, H, T, H, T\}$
- Assumption: the process is controlled by a probability distribution $P_{\text {data }}(x)$ where $x \in\{H, T\}$

Example

Single variable example: A biased coin

- Two outcomes: heads (H) and tails (T)
- Data set: Tosses of the biased coin, e.g., $\mathcal{D}=\{H, H, T, H, T\}$
- Assumption: the process is controlled by a probability distribution $P_{\text {data }}(x)$ where $x \in\{H, T\}$
- Class of models \mathcal{M} : all probability distributions over $x \in\{H, T\}$.

Example

Single variable example: A biased coin

- Two outcomes: heads (H) and tails (T)
- Data set: Tosses of the biased coin, e.g., $\mathcal{D}=\{H, H, T, H, T\}$
- Assumption: the process is controlled by a probability distribution $P_{\text {data }}(x)$ where $x \in\{H, T\}$
- Class of models \mathcal{M} : all probability distributions over $x \in\{H, T\}$.
- Example learning task: How should we choose $P_{\theta}(x)$ from \mathcal{M} if 60 out of 100 tosses are heads in \mathcal{D} ?

MLE scoring for the coin example

We represent our model: $P_{\theta}(x=H)=\theta$ and $P_{\theta}(x=T)=1-\theta$

MLE scoring for the coin example

We represent our model: $P_{\theta}(x=H)=\theta$ and $P_{\theta}(x=T)=1-\theta$

- Example data: $\mathcal{D}=\{H, H, T, H, T\}$

MLE scoring for the coin example

We represent our model: $P_{\theta}(x=H)=\theta$ and $P_{\theta}(x=T)=1-\theta$

- Example data: $\mathcal{D}=\{H, H, T, H, T\}$
- Likelihood of data $=\prod_{i} P_{\theta}\left(x_{i}\right)=\theta \cdot \theta \cdot(1-\theta) \cdot \theta \cdot(1-\theta)$

MLE scoring for the coin example

We represent our model: $P_{\theta}(x=H)=\theta$ and $P_{\theta}(x=T)=1-\theta$

- Example data: $\mathcal{D}=\{H, H, T, H, T\}$
- Likelihood of data $=\prod_{i} P_{\theta}\left(x_{i}\right)=\theta \cdot \theta \cdot(1-\theta) \cdot \theta \cdot(1-\theta)$

- Optimize for θ which makes \mathcal{D} most likely. What is the solution in this case?

MLE scoring for the coin example: Analytical derivation

Distribution: $P_{\theta}(x=H)=\theta$ and $P_{\theta}(x=T)=1-\theta$

- More generally, log-likelihood function

$$
L(\theta)=\theta^{\# \text { heads }} \cdot(1-\theta)^{\# \text { tails }}
$$

MLE scoring for the coin example: Analytical derivation

Distribution: $P_{\theta}(x=H)=\theta$ and $P_{\theta}(x=T)=1-\theta$

- More generally, log-likelihood function

$$
\begin{aligned}
L(\theta) & =\theta^{\# \text { heads }} \cdot(1-\theta)^{\# \text { tails }} \\
\log L(\theta) & =\log \left(\theta^{\# \text { heads }} \cdot(1-\theta)^{\# \text { tails }}\right)
\end{aligned}
$$

MLE scoring for the coin example: Analytical derivation

Distribution: $P_{\theta}(x=H)=\theta$ and $P_{\theta}(x=T)=1-\theta$

- More generally, log-likelihood function

$$
\begin{aligned}
L(\theta) & =\theta^{\# \text { heads }} \cdot(1-\theta)^{\# \text { tails }} \\
\log L(\theta) & =\log \left(\theta^{\# \text { heads }} \cdot(1-\theta)^{\# \text { tails }}\right) \\
& =\# \text { heads } \cdot \log (\theta)+\# \text { tails } \cdot \log (1-\theta)
\end{aligned}
$$

MLE scoring for the coin example: Analytical derivation

Distribution: $P_{\theta}(x=H)=\theta$ and $P_{\theta}(x=T)=1-\theta$

- More generally, log-likelihood function

$$
\begin{aligned}
L(\theta) & =\theta^{\# \text { heads }} \cdot(1-\theta)^{\# \text { tails }} \\
\log L(\theta) & =\log \left(\theta^{\# \text { heads }} \cdot(1-\theta)^{\# \text { tails }}\right) \\
& =\# \text { heads } \cdot \log (\theta)+\# \text { tails } \cdot \log (1-\theta)
\end{aligned}
$$

- MLE Goal: Find $\theta^{*} \in[0,1]$ such that $\log L\left(\theta^{*}\right)$ is maximum.

MLE scoring for the coin example: Analytical derivation

Distribution: $P_{\theta}(x=H)=\theta$ and $P_{\theta}(x=T)=1-\theta$

- More generally, log-likelihood function

$$
\begin{aligned}
L(\theta) & =\theta^{\# \text { heads }} \cdot(1-\theta)^{\# \text { tails }} \\
\log L(\theta) & =\log \left(\theta^{\# \text { heads }} \cdot(1-\theta)^{\# \text { tails }}\right) \\
& =\# \text { heads } \cdot \log (\theta)+\# \text { tails } \cdot \log (1-\theta)
\end{aligned}
$$

- MLE Goal: Find $\theta^{*} \in[0,1]$ such that $\log L\left(\theta^{*}\right)$ is maximum.
- Differentiate the log-likelihood function with respect to θ and set the derivative to zero. We get:

$$
\theta^{*}=\frac{\# \text { heads }}{\# \text { heads }+\# \text { tails }}
$$

MLE scoring for the coin example: Analytical derivation

Distribution: $P_{\theta}(x=H)=\theta$ and $P_{\theta}(x=T)=1-\theta$

- More generally, log-likelihood function

$$
\begin{aligned}
L(\theta) & =\theta^{\# \text { heads }} \cdot(1-\theta)^{\# \text { tails }} \\
\log L(\theta) & =\log \left(\theta^{\# \text { heads }} \cdot(1-\theta)^{\# \text { tails }}\right) \\
& =\# \text { heads } \cdot \log (\theta)+\# \text { tails } \cdot \log (1-\theta)
\end{aligned}
$$

- MLE Goal: Find $\theta^{*} \in[0,1]$ such that $\log L\left(\theta^{*}\right)$ is maximum.
- Differentiate the log-likelihood function with respect to θ and set the derivative to zero. We get:

$$
\theta^{*}=\frac{\# \text { heads }}{\# \text { heads }+\# \text { tails }}
$$

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

$$
P_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\text {neural }}\left(x_{i} \mid \mathbf{x}_{<i} ; \theta_{i}\right)
$$

$\theta=\left(\theta_{1}, \cdots, \theta_{n}\right)$ are the parameters of all the conditionals.

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

$$
P_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\text {neural }}\left(x_{i} \mid \mathbf{x}_{<i} ; \theta_{i}\right)
$$

$\theta=\left(\theta_{1}, \cdots, \theta_{n}\right)$ are the parameters of all the conditionals.
Training data $\mathcal{D}=\left\{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)}\right\}$.

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

$$
P_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\text {neural }}\left(x_{i} \mid \mathbf{x}_{<i} ; \theta_{i}\right)
$$

$\theta=\left(\theta_{1}, \cdots, \theta_{n}\right)$ are the parameters of all the conditionals.
Training data $\mathcal{D}=\left\{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)}\right\}$. Maximum likelihood estimate of the parameters θ ?

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

$$
P_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\text {neural }}\left(x_{i} \mid \mathbf{x}_{<i} ; \theta_{i}\right)
$$

$\theta=\left(\theta_{1}, \cdots, \theta_{n}\right)$ are the parameters of all the conditionals.
Training data $\mathcal{D}=\left\{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)}\right\}$. Maximum likelihood estimate of the parameters θ ?

- Decomposition of Likelihood function

$$
L(\theta, \mathcal{D})=\prod_{j=1}^{m} P_{\theta}\left(\mathbf{x}^{(j)}\right)
$$

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

$$
P_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\text {neural }}\left(x_{i} \mid \mathbf{x}_{<i} ; \theta_{i}\right)
$$

$\theta=\left(\theta_{1}, \cdots, \theta_{n}\right)$ are the parameters of all the conditionals.
Training data $\mathcal{D}=\left\{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)}\right\}$. Maximum likelihood estimate of the parameters θ ?

- Decomposition of Likelihood function

$$
L(\theta, \mathcal{D})=\prod_{j=1}^{m} P_{\theta}\left(\mathbf{x}^{(j)}\right)=\prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

$$
P_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\text {neural }}\left(x_{i} \mid \mathbf{x}_{<i} ; \theta_{i}\right)
$$

$\theta=\left(\theta_{1}, \cdots, \theta_{n}\right)$ are the parameters of all the conditionals.
Training data $\mathcal{D}=\left\{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)}\right\}$. Maximum likelihood estimate of the parameters θ ?

- Decomposition of Likelihood function

$$
L(\theta, \mathcal{D})=\prod_{j=1}^{m} P_{\theta}\left(\mathbf{x}^{(j)}\right)=\prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

- Goal : maximize $\arg \max _{\theta} L(\theta, \mathcal{D})$

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

$$
P_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\text {neural }}\left(x_{i} \mid \mathbf{x}_{<i} ; \theta_{i}\right)
$$

$\theta=\left(\theta_{1}, \cdots, \theta_{n}\right)$ are the parameters of all the conditionals.
Training data $\mathcal{D}=\left\{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)}\right\}$. Maximum likelihood estimate of the parameters θ ?

- Decomposition of Likelihood function

$$
L(\theta, \mathcal{D})=\prod_{j=1}^{m} P_{\theta}\left(\mathbf{x}^{(j)}\right)=\prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

- Goal : maximize arg $\max _{\theta} L(\theta, \mathcal{D})=\arg \max _{\theta} \log L(\theta, \mathcal{D})$

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

$$
P_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\text {neural }}\left(x_{i} \mid \mathbf{x}_{<i} ; \theta_{i}\right)
$$

$\theta=\left(\theta_{1}, \cdots, \theta_{n}\right)$ are the parameters of all the conditionals.
Training data $\mathcal{D}=\left\{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)}\right\}$. Maximum likelihood estimate of the parameters θ ?

- Decomposition of Likelihood function

$$
L(\theta, \mathcal{D})=\prod_{j=1}^{m} P_{\theta}\left(\mathbf{x}^{(j)}\right)=\prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

- Goal: maximize arg $\max _{\theta} L(\theta, \mathcal{D})=\arg \max _{\theta} \log L(\theta, \mathcal{D})$
- We no longer have a closed form solution

MLE Learning: Gradient Descent

$$
L(\theta, \mathcal{D})=\prod_{j=1}^{m} P_{\theta}\left(\mathbf{x}^{(j)}\right)=\prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

MLE Learning: Gradient Descent

$$
L(\theta, \mathcal{D})=\prod_{j=1}^{m} P_{\theta}\left(\mathbf{x}^{(j)}\right)=\prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

Goal : maximize $\arg \max _{\theta} L(\theta, \mathcal{D})$

MLE Learning: Gradient Descent

$$
L(\theta, \mathcal{D})=\prod_{j=1}^{m} P_{\theta}\left(\mathbf{x}^{(j)}\right)=\prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

Goal: maximize arg $\max _{\theta} L(\theta, \mathcal{D})=\arg \max _{\theta} \log L(\theta, \mathcal{D})$

MLE Learning: Gradient Descent

$$
L(\theta, \mathcal{D})=\prod_{j=1}^{m} P_{\theta}\left(\mathbf{x}^{(j)}\right)=\prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

Goal : maximize $\arg \max _{\theta} L(\theta, \mathcal{D})=\arg \max _{\theta} \log L(\theta, \mathcal{D})$

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

MLE Learning: Gradient Descent

$$
L(\theta, \mathcal{D})=\prod_{j=1}^{m} P_{\theta}\left(\mathbf{x}^{(j)}\right)=\prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

Goal: maximize arg $\max _{\theta} L(\theta, \mathcal{D})=\arg \max _{\theta} \log L(\theta, \mathcal{D})$

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize $\theta^{0}=\left(\theta_{1}, \cdots, \theta_{n}\right)$ at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

Non-convex optimization problem, but often works well in practice

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

What is the gradient with respect to θ_{i} ?

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

What is the gradient with respect to θ_{i} ?
$\nabla_{\theta_{i}} \ell(\theta)=\sum_{j=1}^{m} \nabla_{\theta_{i}} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)$

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

What is the gradient with respect to θ_{i} ?
$\nabla_{\theta_{i}} \ell(\theta)=\sum_{j=1}^{m} \nabla_{\theta_{i}} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)=\sum_{j=1}^{m} \nabla_{\theta_{i}} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)$

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

What is the gradient with respect to θ_{i} ?
$\nabla_{\theta_{i}} \ell(\theta)=\sum_{j=1}^{m} \nabla_{\theta_{i}} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)=\sum_{j=1}^{m} \nabla_{\theta_{i}} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)$
Each conditional $p_{\text {neural }}\left(x_{i} \mid \mathbf{x}_{<i} ; \theta_{i}\right)$ can be optimized separately if there is no parameter sharing.

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

What is the gradient with respect to θ_{i} ?
$\nabla_{\theta_{i}} \ell(\theta)=\sum_{j=1}^{m} \nabla_{\theta_{i}} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)=\sum_{j=1}^{m} \nabla_{\theta_{i}} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)$
Each conditional $p_{\text {neural }}\left(x_{i} \mid \mathbf{x}_{<i} ; \theta_{i}\right)$ can be optimized separately if there is no parameter sharing. In practice, parameters θ_{i} are shared (e.g., NADE, PixeIRNN, PixeICNN, etc.)

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

$$
\nabla_{\theta} \ell(\theta)=\sum_{j=1}^{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid x_{<i}^{(j)} ; \theta_{i}\right)
$$

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

$$
\nabla_{\theta} \ell(\theta)=\sum_{j=1}^{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

What if $m=|\mathcal{D}|$ is huge?

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

$$
\nabla_{\theta} \ell(\theta)=\sum_{j=1}^{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid x_{<i}^{(j)} ; \theta_{i}\right)
$$

What if $m=|\mathcal{D}|$ is huge?

$$
\nabla_{\theta} \ell(\theta)=m \sum_{j=1}^{m} \frac{1}{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid x_{<i}^{(j)} ; \theta_{i}\right)
$$

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

$$
\nabla_{\theta} \ell(\theta)=\sum_{j=1}^{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

What if $m=|\mathcal{D}|$ is huge?

$$
\begin{aligned}
\nabla_{\theta} \ell(\theta) & =m \sum_{j=1}^{m} \frac{1}{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right) \\
& =m E_{x(j) \sim \mathcal{D}}\left[\sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)\right]
\end{aligned}
$$

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

$$
\nabla_{\theta} \ell(\theta)=\sum_{j=1}^{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

What if $m=|\mathcal{D}|$ is huge?

$$
\begin{aligned}
\nabla_{\theta} \ell(\theta) & =m \sum_{j=1}^{m} \frac{1}{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid x_{<i}^{(j)} ; \theta_{i}\right) \\
& =m E_{x}(j) \sim \mathcal{D}\left[\sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid x_{<i}^{(j)} ; \theta_{i}\right)\right]
\end{aligned}
$$

Monte Carlo: Sample $x^{(j)} \sim \mathcal{D}$;

MLE Learning: Stochastic Gradient Descent

$$
\ell(\theta)=\log L(\theta, \mathcal{D})=\sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

1. Initialize θ^{0} at random
2. Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
3. $\theta^{t+1}=\theta^{t}+\alpha_{t} \nabla_{\theta} \ell(\theta)$

$$
\nabla_{\theta} \ell(\theta)=\sum_{j=1}^{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)
$$

What if $m=|\mathcal{D}|$ is huge?

$$
\begin{aligned}
\nabla_{\theta} \ell(\theta) & =m \sum_{j=1}^{m} \frac{1}{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right) \\
& =m E_{x}(j) \sim \mathcal{D}\left[\sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid x_{<i}^{(j)} ; \theta_{i}\right)\right]
\end{aligned}
$$

Monte Carlo: Sample $x^{(j)} \sim \mathcal{D} ; \nabla_{\theta} \ell(\theta) \approx m \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)$

Empirical Risk and Overfitting

- Empirical risk minimization can easily overfit the data

Empirical Risk and Overfitting

- Empirical risk minimization can easily overfit the data
- Extreme example: The data is the model (remember all training data).

Empirical Risk and Overfitting

- Empirical risk minimization can easily overfit the data
- Extreme example: The data is the model (remember all training data).
- Generalization: the data is a sample, usually there is vast amount of samples that you have never seen. Your model should generalize well to these "never-seen" samples.

Empirical Risk and Overfitting

- Empirical risk minimization can easily overfit the data
- Extreme example: The data is the model (remember all training data).
- Generalization: the data is a sample, usually there is vast amount of samples that you have never seen. Your model should generalize well to these "never-seen" samples.
- Thus, we typically restrict the hypothesis space of distributions that we search over

Bias-Variance trade off

- If the hypothesis space is very limited, it might not be able to represent $P_{\text {data }}$, even with unlimited data

Bias-Variance trade off

- If the hypothesis space is very limited, it might not be able to represent $P_{\text {data }}$, even with unlimited data
- This type of limitation is called bias, as the learning is limited on how close it can approximate the target distribution

Bias-Variance trade off

- If the hypothesis space is very limited, it might not be able to represent $P_{\text {data }}$, even with unlimited data
- This type of limitation is called bias, as the learning is limited on how close it can approximate the target distribution
- If we select a highly expressive hypothesis class, we might represent better the data

Bias-Variance trade off

- If the hypothesis space is very limited, it might not be able to represent $P_{\text {data }}$, even with unlimited data
- This type of limitation is called bias, as the learning is limited on how close it can approximate the target distribution
- If we select a highly expressive hypothesis class, we might represent better the data
- When we have small amount of data, multiple models can fit well, or even better than the true model.

Bias-Variance trade off

- If the hypothesis space is very limited, it might not be able to represent $P_{\text {data }}$, even with unlimited data
- This type of limitation is called bias, as the learning is limited on how close it can approximate the target distribution
- If we select a highly expressive hypothesis class, we might represent better the data
- When we have small amount of data, multiple models can fit well, or even better than the true model. Moreover, small perturbations on \mathcal{D} will result in very different estimates

Bias-Variance trade off

- If the hypothesis space is very limited, it might not be able to represent $P_{\text {data }}$, even with unlimited data
- This type of limitation is called bias, as the learning is limited on how close it can approximate the target distribution
- If we select a highly expressive hypothesis class, we might represent better the data
- When we have small amount of data, multiple models can fit well, or even better than the true model. Moreover, small perturbations on \mathcal{D} will result in very different estimates
- This limitation is call the variance.

Bias-Variance trade off

- If the hypothesis space is very limited, it might not be able to represent $P_{\text {data }}$, even with unlimited data
- This type of limitation is called bias, as the learning is limited on how close it can approximate the target distribution
- If we select a highly expressive hypothesis class, we might represent better the data
- When we have small amount of data, multiple models can fit well, or even better than the true model. Moreover, small perturbations on \mathcal{D} will result in very different estimates
- This limitation is call the variance.

Bias-Variance trade off

- There is an inherent bias-variance trade off when selecting the hypothesis class.

Bias-Variance trade off

- There is an inherent bias-variance trade off when selecting the hypothesis class. Error in learning due to both things: bias and variance.

Bias-Variance trade off

- There is an inherent bias-variance trade off when selecting the hypothesis class. Error in learning due to both things: bias and variance.
- Hypothesis space: linear relationship

Bias-Variance trade off

- There is an inherent bias-variance trade off when selecting the hypothesis class. Error in learning due to both things: bias and variance.
- Hypothesis space: linear relationship
- Does it fit well?

Bias-Variance trade off

- There is an inherent bias-variance trade off when selecting the hypothesis class. Error in learning due to both things: bias and variance.
- Hypothesis space: linear relationship
- Does it fit well? Underfits

Bias-Variance trade off

- There is an inherent bias-variance trade off when selecting the hypothesis class. Error in learning due to both things: bias and variance.
- Hypothesis space: linear relationship
- Does it fit well? Underfits
- Hypothesis space: high degree polynomial

Bias-Variance trade off

- There is an inherent bias-variance trade off when selecting the hypothesis class. Error in learning due to both things: bias and variance.
- Hypothesis space: linear relationship
- Does it fit well? Underfits
- Hypothesis space: high degree polynomial
- Overfits

Bias-Variance trade off

- There is an inherent bias-variance trade off when selecting the hypothesis class. Error in learning due to both things: bias and variance.
- Hypothesis space: linear relationship
- Does it fit well? Underfits
- Hypothesis space: high degree polynomial
- Overfits
- Hypothesis space: low degree polynomial

Bias-Variance trade off

- There is an inherent bias-variance trade off when selecting the hypothesis class. Error in learning due to both things: bias and variance.
- Hypothesis space: linear relationship
- Does it fit well? Underfits
- Hypothesis space: high degree polynomial
- Overfits
- Hypothesis space: low degree polynomial
- Right tradeoff

How to avoid overfitting?

- Hard constraints, e.g. by selecting a less expressive model family:

How to avoid overfitting?

- Hard constraints, e.g. by selecting a less expressive model family:
- Smaller neural networks with less parameters

How to avoid overfitting?

- Hard constraints, e.g. by selecting a less expressive model family:
- Smaller neural networks with less parameters
- Weight sharing

How to avoid overfitting?

- Hard constraints, e.g. by selecting a less expressive model family:
- Smaller neural networks with less parameters
- Weight sharing

How to avoid overfitting?

- Hard constraints, e.g. by selecting a less expressive model family:
- Smaller neural networks with less parameters
- Weight sharing

- Soft preference for "simpler" models: Occam Razor.
- Augment the objective function with regularization:

$$
\operatorname{objective}(\mathbf{x}, \mathcal{M})=\operatorname{loss}(\mathbf{x}, \mathcal{M})+R(\mathcal{M})
$$

How to avoid overfitting?

- Hard constraints, e.g. by selecting a less expressive model family:
- Smaller neural networks with less parameters
- Weight sharing

$$
\begin{gathered}
x^{(j)} \sim P_{\text {data }} \\
j=1,2, \ldots, m
\end{gathered}
$$

- Soft preference for "simpler" models: Occam Razor.
- Augment the objective function with regularization:

$$
\operatorname{objective}(\mathbf{x}, \mathcal{M})=\operatorname{loss}(\mathbf{x}, \mathcal{M})+R(\mathcal{M})
$$

- Evaluate generalization performance on a held-out validation set

Conditional generative models

- Suppose we want to generate a set of variables \mathbf{Y} given some others X, e.g., text to speech

Conditional generative models

- Suppose we want to generate a set of variables \mathbf{Y} given some others X, e.g., text to speech
- We concentrate on modeling $p(\mathbf{Y} \mid \mathbf{X})$, and use a conditional loss function

$$
-\log P_{\theta}(\mathbf{y} \mid \mathbf{x})
$$

Conditional generative models

- Suppose we want to generate a set of variables \mathbf{Y} given some others X, e.g., text to speech
- We concentrate on modeling $p(\mathbf{Y} \mid \mathbf{X})$, and use a conditional loss function

$$
-\log P_{\theta}(\mathbf{y} \mid \mathbf{x})
$$

- Since the loss function only depends on $P_{\theta}(\mathbf{y} \mid \mathbf{x})$, suffices to estimate the conditional distribution, not the joint

Conditional generative models

- Suppose we want to generate a set of variables \mathbf{Y} given some others X, e.g., text to speech
- We concentrate on modeling $p(\mathbf{Y} \mid \mathbf{X})$, and use a conditional loss function

$$
-\log P_{\theta}(\mathbf{y} \mid \mathbf{x})
$$

- Since the loss function only depends on $P_{\theta}(\mathbf{y} \mid \mathbf{x})$, suffices to estimate the conditional distribution, not the joint

Input: image

Recap

- For autoregressive models, it is easy to compute $p_{\theta}(x)$
- Ideally, evaluate in parallel each conditional $\log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)$.

Recap

- For autoregressive models, it is easy to compute $p_{\theta}(x)$
- Ideally, evaluate in parallel each conditional $\log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)$. Not like RNNs.

Recap

- For autoregressive models, it is easy to compute $p_{\theta}(x)$
- Ideally, evaluate in parallel each conditional $\log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)$. Not like RNNs.
- Natural to train them via maximum likelihood

Recap

- For autoregressive models, it is easy to compute $p_{\theta}(x)$
- Ideally, evaluate in parallel each conditional $\log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)$. Not like RNNs.
- Natural to train them via maximum likelihood
- Higher log-likelihood doesn't necessarily mean better looking samples

Recap

- For autoregressive models, it is easy to compute $p_{\theta}(x)$
- Ideally, evaluate in parallel each conditional $\log p_{\text {neural }}\left(x_{i}^{(j)} \mid \mathbf{x}_{<i}^{(j)} ; \theta_{i}\right)$. Not like RNNs.
- Natural to train them via maximum likelihood
- Higher log-likelihood doesn't necessarily mean better looking samples
- Other ways of measuring similarity are possible (Generative Adversarial Networks, GANs)

