Deep Generative Models

Lecture 4: Maximum Likelihood Learning

Aditya Grover

UCLA

Learning a generative model

e Given: a training set of examples, e.g., images of dogs

el “E(E‘L“*L},i’),
e | Pq P
ata
0eM

*D~Pyara
j=12,..m

Learning a generative model

e Given: a training set of examples, e.g., images of dogs

d(PdatavPBL
G data:ud
Pgata o

xD~Pyara 0eM
j=12,..m

e Goal: learn a probability distribution p(x) over images x

e Generation: If we sample Xy, ~ p(x), Xpew should look like a
dog (sampling)

e Density estimation: p(x) should be high if x looks like a dog,
and low otherwise (anomaly detection)

e Unsupervised representation learning: We should be able to
learn what these images have in common, e.g., ears, tail, etc.
(features)

e First question: how to represent py(x).

Learning a generative model

e Given: a training set of examples, e.g., images of dogs

d(PdatavPBL
G data:ud
Pgata o

xD~Pyara 0eM
j=12,..m

e Goal: learn a probability distribution p(x) over images x

e Generation: If we sample Xy, ~ p(x), Xpew should look like a
dog (sampling)

e Density estimation: p(x) should be high if x looks like a dog,
and low otherwise (anomaly detection)

e Unsupervised representation learning: We should be able to
learn what these images have in common, e.g., ears, tail, etc.
(features)

e First question: how to represent py(x). Second question: how to
learn it. 2/26

e Lets assume that the domain is governed by some underlying
distribution Pyt

e We are given a dataset D of m samples from Pga¢a

e Lets assume that the domain is governed by some underlying
distribution Pyt
e We are given a dataset D of m samples from Pga¢a

e Each sample is an assignment of values to the variables, e.g.,
(Xbank = 1, Xdontar = 0, ..., Y = 1) or pixel intensities.

e Lets assume that the domain is governed by some underlying
distribution Pyt
e We are given a dataset D of m samples from Pga¢a
e Each sample is an assignment of values to the variables, e.g.,
(Xbank = 1, Xdontar = 0, ..., Y = 1) or pixel intensities.

e The standard assumption is that the data instances are
independent and identically distributed (11D)

e Lets assume that the domain is governed by some underlying
distribution Pyt

e We are given a dataset D of m samples from Pga¢a

e Each sample is an assignment of values to the variables, e.g.,
(Xbank = 1, Xdontar = 0, ..., Y = 1) or pixel intensities.

e The standard assumption is that the data instances are
independent and identically distributed (11D)

e We are also given a family of models M, and our task is to learn
parameters 6 of some “good” model Py € M

e For example, all Bayes nets with a given graph structure, for
all possible choices of the CPD tables

e Lets assume that the domain is governed by some underlying
distribution Pyt

e We are given a dataset D of m samples from Pga¢a
e Each sample is an assignment of values to the variables, e.g.,
(Xbank = 1, Xdontar = 0, ..., Y = 1) or pixel intensities.
e The standard assumption is that the data instances are
independent and identically distributed (11D)

e We are also given a family of models M, and our task is to learn
parameters 6 of some “good” model Py € M
e For example, all Bayes nets with a given graph structure, for
all possible choices of the CPD tables
e For example, a FVSBN for all possible choices of the logistic
regression parameters.

e Lets assume that the domain is governed by some underlying

distribution Pyt

e We are given a dataset D of m samples from Pga¢a
e Each sample is an assignment of values to the variables, e.g.,
(Xbank = 1, Xdontar = 0, ..., Y = 1) or pixel intensities.
e The standard assumption is that the data instances are
independent and identically distributed (11D)

e We are also given a family of models M, and our task is to learn
parameters 6 of some “good” model Py € M
e For example, all Bayes nets with a given graph structure, for
all possible choices of the CPD tables
e For example, a FVSBN for all possible choices of the logistic
regression parameters. M = {Py,0 € ©}, § = concatenation
of all logistic regression coefficients

Goal of learning

e The goal of learning is to return a model Py that precisely captures
the distribution Pg,t, from which our data was sampled

Goal of learning

e The goal of learning is to return a model Py that precisely captures
the distribution Pg,t, from which our data was sampled

e This is in general not achievable because of

e limited data only provides a rough approximation of the true
underlying distribution
e computational reasons

Goal of learning

e The goal of learning is to return a model Py that precisely captures
the distribution Pg,t, from which our data was sampled

e This is in general not achievable because of

e limited data only provides a rough approximation of the true
underlying distribution
e computational reasons

e Example. Suppose we represent each image with a vector X of 784
binary variables (black vs. white pixel).

Goal of learning

e The goal of learning is to return a model Py that precisely captures
the distribution Pg,t, from which our data was sampled

e This is in general not achievable because of

e limited data only provides a rough approximation of the true
underlying distribution
e computational reasons

e Example. Suppose we represent each image with a vector X of 784
binary variables (black vs. white pixel). How many possible states
(= possible images) in the model?

Goal of learning

e The goal of learning is to return a model Py that precisely captures
the distribution Pg,t, from which our data was sampled

e This is in general not achievable because of

e limited data only provides a rough approximation of the true
underlying distribution
e computational reasons

e Example. Suppose we represent each image with a vector X of 784
binary variables (black vs. white pixel). How many possible states
(= possible images) in the model? 2784 ~ 1023,

Goal of learning

e The goal of learning is to return a model Py that precisely captures
the distribution Pg,t, from which our data was sampled

e This is in general not achievable because of

e limited data only provides a rough approximation of the true
underlying distribution
e computational reasons

e Example. Suppose we represent each image with a vector X of 784
binary variables (black vs. white pixel). How many possible states
(= possible images) in the model? 2784 ~ 1023¢. Even 107 training
examples provide extremely sparse coverage!

Goal of learning

e The goal of learning is to return a model Py that precisely captures
the distribution Pg,t, from which our data was sampled

e This is in general not achievable because of

e limited data only provides a rough approximation of the true
underlying distribution
e computational reasons

e Example. Suppose we represent each image with a vector X of 784
binary variables (black vs. white pixel). How many possible states
(= possible images) in the model? 2784 ~ 1023¢. Even 107 training
examples provide extremely sparse coverage!

e We want to select Py to construct the "best” approximation to the
underlying distribution Pqaga

Goal of learning

e The goal of learning is to return a model Py that precisely captures
the distribution Pg,t, from which our data was sampled

e This is in general not achievable because of

e limited data only provides a rough approximation of the true
underlying distribution
e computational reasons

e Example. Suppose we represent each image with a vector X of 784
binary variables (black vs. white pixel). How many possible states
(= possible images) in the model? 2784 ~ 1023¢. Even 107 training
examples provide extremely sparse coverage!

e We want to select Py to construct the "best” approximation to the
underlying distribution Pqaga

e What is “best”?

This depends on what we want to do

1. Density estimation: we are interested in the full distribution (so
later we can compute whatever conditional probabilities we want)

This depends on what we want to do

1. Density estimation: we are interested in the full distribution (so
later we can compute whatever conditional probabilities we want)

2. Specific prediction tasks: we are using the distribution to make a

prediction

e |s this email spam or not?
e Predict next frame in a video

This depends on what we want to do

1. Density estimation: we are interested in the full distribution (so
later we can compute whatever conditional probabilities we want)

2. Specific prediction tasks: we are using the distribution to make a

prediction

e |s this email spam or not?
e Predict next frame in a video

3. Structure or knowledge discovery: we are interested in the model
itself

e How do some genes interact with each other?
e What causes cancer?

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

e In this setting we can view the learning problem as density
estimation

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

e In this setting we can view the learning problem as density
estimation

e We want to construct Py as “close” as possible to Pgat. (recall we
assume we are given a dataset D of samples from Pgata)

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

e In this setting we can view the learning problem as density
estimation

e We want to construct Py as “close” as possible to Pgat. (recall we
assume we are given a dataset D of samples from Pgata)

6/26

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

e In this setting we can view the learning problem as density
estimation

e We want to construct Py as “close” as possible to Pgat. (recall we
assume we are given a dataset D of samples from Pgata)

x(j)"’Pdata & Ehd
j=12,..,m

e How do we evaluate " closeness”?
6/26

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

e In this setting we can view the learning problem as density
estimation

e We want to construct Py as “close” as possible to Pgat. (recall we
assume we are given a dataset D of samples from Pgata)

x(j)"’Pdata & Ehd
j=12,..,m

e How do we evaluate " closeness”?
6/26

KL-divergence

e How should we measure distance between distributions?

KL-divergence

e How should we measure distance between distributions?
e The Kullback-Leibler divergence (KL-divergence) between
two distributions p and g is defined as

X
)i
D(pllq) = Zp og 2%)

KL-divergence

e How should we measure distance between distributions?
e The Kullback-Leibler divergence (KL-divergence) between
two distributions p and g is defined as

X
)i —.
D(pllq) = Zp %8 1 (3)

e D(p|lg) > 0 for all p,q, with equality if and only if p = g.

KL-divergence

e How should we measure distance between distributions?
e The Kullback-Leibler divergence (KL-divergence) between

two distributions p and g is defined as
p(x)
x) | .
D(pllq) = E p(x) log 22 a(x)

e D(p|lg) > 0 for all p,q, with equality if and only if p = g.
Proof:
q(X)}

Bxp {* %8 o(x)

KL-divergence

e How should we measure distance between distributions?
e The Kullback-Leibler divergence (KL-divergence) between

two distributions p and g is defined as
p(x)
x) |
D(pllq) = E p(x) log 22 o)’

e D(p|lg) > 0 for all p,q, with equality if and only if p = g.
Proof:

Exep [7 log %} > —log <Ex~P {%D

KL-divergence

e How should we measure distance between distributions?
e The Kullback-Leibler divergence (KL-divergence) between

two distributions p and g is defined as
p(x)
x) |
D(pllq) = E p(x) log 22 o)’

e D(p|lg) > 0 for all p,q, with equality if and only if p = g.
Proof:

o RO | R)

KL-divergence

e How should we measure distance between distributions?
e The Kullback-Leibler divergence (KL-divergence) between

two distributions p and g is defined as
p(x)
x) | .
D(pllq) = E p(x) log 22 a(x)

e D(p|lg) > 0 for all p,q, with equality if and only if p = g.
Proof:

o [s [28]) -~ (Sr05) -

X

KL-divergence

e How should we measure distance between distributions?
e The Kullback-Leibler divergence (KL-divergence) between
two distributions p and g is defined as

X
)i .
D(pllq) = Zp og 274)

e D(p|lg) > 0 for all p,q, with equality if and only if p = g.
Proof:

B {f log %} > —log <Ex~p {%D = —log (Z p(x)"Ei) =

o Notice that KL-divergence is asymmetric, i.e.,

D(pllq) # D(allp)

KL-divergence

e How should we measure distance between distributions?
e The Kullback-Leibler divergence (KL-divergence) between
two distributions p and g is defined as

X
)i
D(pllq) = Zp og 2%)

e D(p|lg) > 0 for all p,q, with equality if and only if p = g.
Proof:

B {f log %} > —log <Ex~p {%D = —log (Z p(x)"Ei) =

o Notice that KL-divergence is asymmetric, i.e.,
D(plla) # D(qllp)

e Measures the expected number of extra bits required to
describe samples from p(x) using a code based on ¢ instead

of p 7/26

Detour on KL-divergence

e Knowledge of the data distribution aids compression

(o6}
N
(o)}

Detour on KL-divergence

e Knowledge of the data distribution aids compression

e For example, let Xi, -+, X100 be samples of an unbiased coin.
Roughly 50 heads and 50 tails. Optimal compression scheme
is to record heads as 0 and tails as 1. In expectation, use 1 bit
per sample, and cannot do better

(o6}
N
(o)}

Detour on KL-divergence

e Knowledge of the data distribution aids compression

e For example, let Xi, -+, X100 be samples of an unbiased coin.
Roughly 50 heads and 50 tails. Optimal compression scheme
is to record heads as 0 and tails as 1. In expectation, use 1 bit

per sample, and cannot do better
e Suppose the coin is biased, and P[H] > P[T].

(o6}
N
(o)}

Detour on KL-divergence

e Knowledge of the data distribution aids compression
e For example, let Xi, -+, X100 be samples of an unbiased coin.
Roughly 50 heads and 50 tails. Optimal compression scheme
is to record heads as 0 and tails as 1. In expectation, use 1 bit
per sample, and cannot do better
e Suppose the coin is biased, and P[H] > P[T]. Then it's more
efficient to uses fewer bits on average to represent heads and
more bits to represent tails, e.g.
e Batch multiple samples together
e Use a short sequence of bits to encode HHHH (common) and
a long sequence for TTTT (rare).
o Like Morse code: E=9o, A=0e—, Q = — — o—

(o6}
N
(o)}

Detour on KL-divergence

e Knowledge of the data distribution aids compression

e For example, let Xi, -+, X100 be samples of an unbiased coin.
Roughly 50 heads and 50 tails. Optimal compression scheme
is to record heads as 0 and tails as 1. In expectation, use 1 bit

per sample, and cannot do better
e Suppose the coin is biased, and P[H] > P[T]. Then it's more
efficient to uses fewer bits on average to represent heads and
more bits to represent tails, e.g.
e Batch multiple samples together
e Use a short sequence of bits to encode HHHH (common) and
a long sequence for TTTT (rare).
o Like Morse code: E=9o, A=0e—, Q = — — o—
e Kl-divergence: if your data comes from p, but you use a
scheme optimized for g, the divergence Dk, (pl||q) is the
number of extra bits you'll need on average

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

e In this setting we can view the learning problem as density
estimation

e We want to construct Py as "close” as possible to Pgat. (recall we
assume we are given a dataset D of samples from Pgata)

e How do we evaluate " closeness”?

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

e In this setting we can view the learning problem as density
estimation

e We want to construct Py as "close” as possible to Pgat. (recall we
assume we are given a dataset D of samples from Pgata)

e How do we evaluate " closeness”?

e KL-divergence is one possibility:

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

e In this setting we can view the learning problem as density
estimation

e We want to construct Py as "close” as possible to Pgat. (recall we
assume we are given a dataset D of samples from Pgata)

e How do we evaluate " closeness”?

e KL-divergence is one possibility:

D(Paatal|Po) = Ex~py.,. [Iog <P;’;:(d£;)ﬂ = zxj Paata(x) log Iw

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

e In this setting we can view the learning problem as density
estimation

e We want to construct Py as "close” as possible to Pgat. (recall we
assume we are given a dataset D of samples from Pgata)

e How do we evaluate " closeness”?

e KL-divergence is one possibility:
Pata(x [Poer((E3
D(PdataHPG) = EXNPdMa |:|Og < k td)):l Z Pddtd |Og dP(;t(())

e D(Pqatal|Po) = 0 iff the two distributions are the same.

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

e In this setting we can view the learning problem as density
estimation

e We want to construct Py as "close” as possible to Pgat. (recall we
assume we are given a dataset D of samples from Pgata)

e How do we evaluate " closeness”?

e KL-divergence is one possibility:

P((‘L P a
D(PdataHPG) = EXNPdMa |:|Og< k td X):l Z Pddtd |Og dat (X)
(x) Po(x)
e D(Pqatal|Po) = 0 iff the two distributions are the same.

e |t measures the " compression loss” (in bits) of using Py instead of
Pdata-

Learning as density estimation

e We want to learn the full distribution so that later we can answer
any probabilistic inference query

e In this setting we can view the learning problem as density
estimation

e We want to construct Py as "close” as possible to Pgat. (recall we
assume we are given a dataset D of samples from Pgata)

e How do we evaluate " closeness”?

e KL-divergence is one possibility:

P((‘L P a
D(PdataHPG) = EXNPdMa |:|Og< k td X):l Z Pddtd |Og dat (X)
(x) Po(x)
e D(Pqatal|Po) = 0 iff the two distributions are the same.

e |t measures the " compression loss” (in bits) of using Py instead of
Pdata-

Expected log-likelihood

e We can simplify this somewhat:

Ex~Paue ['Og (P;lvj(ag)ﬂ

= ExPyu. [108 Paata(X)] — Ex~py,,. [log Po(x)]

D(PdataHPG)

10/ 26

Expected log-likelihood

e We can simplify this somewhat:

Ex~Paue ['Og (P;lvj(ag)ﬂ

= Exopy. [108 Paata(X)] — Exvpy, [log Po(x)]

D(PdataHPG)

e The first term does not depend on Py.

10/ 26

Expected log-likelihood

e We can simplify this somewhat:

ExPiaia [Iog (P;;:(i;()ﬂ

= Exopy. [108 Paata(X)] — Exvpy, [log Po(x)]

D(PdataHPG)

e The first term does not depend on Py.

e Then, minimizing KL divergence is equivalent to maximizing the
expected log-likelihood

10/ 26

Expected log-likelihood

e We can simplify this somewhat:

ExPiaia [Iog (P::(i;()ﬂ

= Exopy. [108 Paata(X)] — Exvpy, [log Po(x)]

D(PdataHPG)

e The first term does not depend on Py.

e Then, minimizing KL divergence is equivalent to maximizing the
expected log-likelihood

e Asks that Py assign high probability to instances sampled from
Piata, SO as to reflect the true distribution

10/ 26

Expected log-likelihood

e We can simplify this somewhat:

DFalP) = B os (Bl

= Exopuua [108 Paata(X)] — Exvpy,., [log Po(x)]
e The first term does not depend on Py.

e Then, minimizing KL divergence is equivalent to maximizing the
expected log-likelihood
e Asks that Py assign high probability to instances sampled from
Piata, SO as to reflect the true distribution
e Because of log, samples x where Py(x) =~ 0 weigh heavily in
objective

10/ 26

Expected log-likelihood

e We can simplify this somewhat:

Ex~Paue ['Og (P;lvj(ag)ﬂ

D(PdataHPG) s 7 N\
= ExvPyui. [108 Paata(X)] = Exwpya. [l0g Po(x)]

e The first term does not depend on Py.
e Then, minimizing KL divergence is equivalent to maximizing the
expected log-likelihood
e Asks that Py assign high probability to instances sampled from
Piata, SO as to reflect the true distribution
e Because of log, samples x where Py(x) =~ 0 weigh heavily in
objective
e Although we can now compare models, since we are ignoring
H(Paiata), we don't know how close we are to the optimum

10/ 26

Expected log-likelihood

e We can simplify this somewhat:

Pdata(x)>:|

Exp,,, |log | —S22222

[g(Po(x)

= ExPyu. [108 Paata(X)] — Ex~py,,. [log Po(x)]

D(PdataHPG)

e The first term does not depend on Py.

e Then, minimizing KL divergence is equivalent to maximizing the
expected log-likelihood
e Asks that Py assign high probability to instances sampled from
Piata, SO as to reflect the true distribution
e Because of log, samples x where Py(x) =~ 0 weigh heavily in
objective

e Although we can now compare models, since we are ignoring
H(Paiata), we don't know how close we are to the optimum

e Problem: In general we do not know Pg,¢..
10/26

Maximum likelihood

e Approximate the expected log-likelihood

ExPiaca [l0g Po(x)]

with the empirical log-likelihood.

Ep [log Py(x)] = % Z log Py(x)
x€D

11/26

Maximum likelihood

e Approximate the expected log-likelihood

ExPiaca [l0g Po(x)]

with the empirical log-likelihood.

Ep [log Py(x = Z log Py(x
xeD

e Maximum likelihood Iearning is then:

max @ Z log Py(x

11/26

Maximum likelihood

e Approximate the expected log-likelihood

ExPiaca [l0g Po(x)]

with the empirical log-likelihood.

Ep [log Py(x = Z log Py(x
x€D

e Maximum likelihood Iearning is then:

max @ Z log Py(x

e Equivalently, maximize likelihood of the data
Py(x(), ... x(m) = [Teep Po(x)

11/26

Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of
a random variable.

Explg(x)] = g(x)P(x)

Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of
a random variable.

Explg(x)] = g(x)P(x)

2. Generate T samples x!,...,x" from the distribution P with

respect to which the expectation was taken.

Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of

a random variable.

Explg(x)] = g(x)P(x)

2. Generate T samples x!,...,x" from the distribution P with
respect to which the expectation was taken.

3. Estimate the expected value from the samples using:

T

R 1

g(xlv"' aXT) = ?Zg(xt)
=il

T

where x!, ..., xT are independent samples from P.

Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of
a random variable.

Explg(x)] = g(x)P(x)

2. Generate T samples x!,...,x" from the distribution P with
respect to which the expectation was taken.

3. Estimate the expected value from the samples using:

T

R 1

g(xlv"' aXT) = ?Zg(xt)
=il

T

where x, ..., x" are independent samples from P. Note: g is

a random variable.

Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of
a random variable.

Explg(x)] = g(x)P(x)

2. Generate T samples x!,...,x" from the distribution P with
respect to which the expectation was taken.

3. Estimate the expected value from the samples using:

T

R 1

g(xlv"' aXT) = ?Zg(xt)
=il

T

where x, ..., x" are independent samples from P. Note: g is

a random variable. Why?

Properties of the Monte Carlo Estimate

e Unbiased:
Ep[g] = Eplg(x)]

13 /26

Properties of the Monte Carlo Estimate

e Unbiased:
Ep[g] = Eplg(x)]

e Convergence: By law of large numbers

Z) = Eplg(x)] for T — oo

13 /26

Properties of the Monte Carlo Estimate

e Unbiased:
Ep[g] = Eplg(x)]

e Convergence: By law of large numbers

Z) = Eplg(x)] for T — oo

e Variance:

_ Velg(x)]
T

Velg] = [Zg

Thus, variance of the estimator can be reduced by increasing

the number of samples.

13 /26

Single variable example: A biased coin

e Two outcomes: heads (H) and tails (T)

14 /26

Single variable example: A biased coin

e Two outcomes: heads (H) and tails (T)

e Data set: Tosses of the biased coin, e.g.,
D={H,H, T,H, T}

14 /26

Single variable example: A biased coin

e Two outcomes: heads (H) and tails (T)

e Data set: Tosses of the biased coin, e.g.,
D={H,H, T,H, T}

e Assumption: the process is controlled by a probability
distribution Pgata(x) where x € {H, T}

14 /26

Single variable example: A biased coin

e Two outcomes: heads (H) and tails (T)

e Data set: Tosses of the biased coin, e.g.,
D={H,H, T,H, T}

e Assumption: the process is controlled by a probability
distribution Pgata(x) where x € {H, T}

e Class of models M: all probability distributions over
xe{H, T}.

14 /26

Single variable example: A biased coin

e Two outcomes: heads (H) and tails (T)

e Data set: Tosses of the biased coin, e.g.,
D={H,H, T,H, T}

e Assumption: the process is controlled by a probability
distribution Pgata(x) where x € {H, T}

e Class of models M: all probability distributions over
xe{H, T}.

e Example learning task: How should we choose Py(x) from M
if 60 out of 100 tosses are heads in D7

14 /26

MLE scoring for the coin example

We represent our model: Pg(x = H) =60 and Py(x =T)=1-16

15 /26

MLE scoring for the coin example

We represent our model: Pg(x = H) =60 and Py(x =T)=1-16

e Example data: D ={H,H,T,H, T}

15 /26

MLE scoring for the coin example

We represent our model: Pg(x = H) =60 and Py(x =T)=1-16

e Example data: D={H,H, T,H, T}
e Likelihood of data = [[; Pg(xj) =0-60-(1—6)-0-(1—6)

15 /26

MLE scoring for the coin example

We represent our model: Pg(x = H) =60 and Py(x =T)=1-16

e Example data: D={H,H, T,H, T}
e Likelihood of data = [[; Pg(xj) =0-60-(1—6)-0-(1—6)

L(6:D)

0 0.2 0.4 0.6 0.8 1
2]

e Optimize for # which makes D most likely. What is the

solution in this case?

15 /26

MLE scoring for the coin example: Analytical derivation

Distribution: Pg(x = H) =60 and Py(x =T)=1-6

e More generally, log-likelihood function

L(@) _ Q#heads . (1 o 0)#tails

16 /26

MLE scoring for the coin example: Analytical derivation

Distribution: Pg(x = H) =60 and Py(x =T)=1-6

e More generally, log-likelihood function

L(@) _ Q#heads . (1 o 0)#tails
Iog L(Q) _ |Og(9#heads . (1 o 9)#tai15)

16 /26

MLE scoring for the coin example: Analytical derivation

Distribution: Pg(x = H) =60 and Py(x =T)=1-6

e More generally, log-likelihood function
L(@) _ Q#heads . (1 o 0)#tails

Iog L(Q) _ |Og(9#heads . (1 o 9)#tai15)
= #heads - log(8) + #tails - log(1 — 6)

16 /26

MLE scoring for the coin example: Analytical derivation

Distribution: Pg(x = H) =60 and Py(x =T)=1-6
e More generally, log-likelihood function
L(@) _ Q#heads . (1 _ 0)#tails
|Og L(Q) — |Og(9#heads . (1 o 9)#tai15)

= #heads - log(8) + #tails - log(1 — 6)

e MLE Goal: Find #* € [0, 1] such that log L(6*) is maximum.

16 /26

MLE scoring for the coin example: Analytical derivation

Distribution: Pg(x = H) =60 and Py(x =T)=1-6

e More generally, log-likelihood function

L(@) _ Q#heads . (1 o 0)#tails
Iog L(Q) _ |Og(9#heads . (1 o 9)#tai15)
= #heads - log(8) + #tails - log(1 — 6)

e MLE Goal: Find #* € [0, 1] such that log L(6*) is maximum.
e Differentiate the log-likelihood function with respect to 6 and
set the derivative to zero. We get:
heads
- #heads + #tails

*

16 /26

MLE scoring for the coin example: Analytical derivation

Distribution: Pg(x = H) =60 and Py(x =T)=1-6

e More generally, log-likelihood function

L(@) _ Q#heads . (1 o 0)#tails
Iog L(Q) _ |Og(9#heads . (1 o 9)#tai15)
= #heads - log(8) + #tails - log(1 — 6)

e MLE Goal: Find #* € [0, 1] such that log L(6*) is maximum.
e Differentiate the log-likelihood function with respect to 6 and
set the derivative to zero. We get:
heads
- #heads + #tails

*

16 /26

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization
n
PQ(X) = H pneural(xi|x<i; 9/)
i=1

0 = (01, ,0,) are the parameters of all the conditionals.

17 /26

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

n

PQ(X) = H pneural(xi|x<i; 9/)

i=1

0 = (01, ,0,) are the parameters of all the conditionals.
Training data D = {x(M) ... x(m}

17 /26

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization
n
PQ(X) = H pneural(xi|x<i; 9/)
i=1
0 = (01, ,0,) are the parameters of all the conditionals.

Training data D = {xM), ... x(M} Maximum likelihood estimate

of the parameters 07

17 /26

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

n

PQ(X) = H pneural(xi|x<i; 9/)

i=1
0 = (01, ,0,) are the parameters of all the conditionals.

Training data D = {xM), ... x(M} Maximum likelihood estimate

of the parameters 07

e Decomposition of Likelihood function

L(8,D) = ﬁpg(x(i))

17 /26

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization
n
PQ(X) = H pneural(xi|x<i; 9/)
i=1

0 = (01, ,0,) are the parameters of all the conditionals.
Training data D = {xM), ... x(M} Maximum likelihood estimate

of the parameters 07

e Decomposition of Likelihood function

L(H, D) - H 'DG(X(J)) - H H pneural(x,'(j)|x(i);; ‘9:)
j=1

j=1i=1

17 /26

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization
n
PQ(X) = H pneural(xi|x<i; 9/)
i=1

0 = (01, ,0,) are the parameters of all the conditionals.
Training data D = {xM), ... x(M} Maximum likelihood estimate

of the parameters 07

e Decomposition of Likelihood function

L(H, D) - H 'DG(X(J)) - H H pneural(x,'(j)|x(i);; ‘9:)
j=1

j=1i=1

e Goal : maximize arg maxy L(0, D)

17 /26

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

n

PQ(X) = H pneural(xi|x<i; 9/)

i=1
0 = (01, ,0,) are the parameters of all the conditionals.

Training data D = {xM), ... x(M} Maximum likelihood estimate

of the parameters 07

e Decomposition of Likelihood function

L(H, D) - H 'DG(X(J)) - H H pneural(x,'(j)|x(i);; ‘9:)
j=1

j=1i=1

e Goal : maximize arg maxy L(6, D) = arg maxg log L(6, D)

17 /26

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization
n
PO(X) = H pneural(xi|x<i; 9/)
i=1

0 = (01, ,0,) are the parameters of all the conditionals.
Training data D = {xM), ... x(M} Maximum likelihood estimate

of the parameters 07
e Decomposition of Likelihood function
L(Ha D) = H P@(X(’I)) = H H pneural(x,'(j)|x(i);; ‘91)
=1 j=1i=1
e Goal : maximize arg maxy L(6, D) = arg maxg log L(6, D)

e We no longer have a closed form solution

17 /26

MLE Learning: Gradient Descent

l_((g D) = ﬁ H H pneurdl 9)

j=1i=1

MLE Learning: Gradient Descent

l_((g D) = ﬁ H H pneurdl 9)

j=1i=1

Goal : maximize arg maxy L(6, D)

MLE Learning: Gradient Descent

l_((g D) = H H H pneurdl 9)

j=1i=1

Goal : maximize arg maxy L(6, D) = arg maxg log L(0, D)

MLE Learning: Gradient Descent

l_((g D) = H H H pneurdl 9)

j=1i=1
Goal : maximize arg maxy L(6, D) = arg maxg log L(0, D)

n

E(Q) |Og L (9 D Z Z |Og pneural J g?v 9)
Jj=1i=1

MLE Learning: Gradient Descent

[_((9 D) = ﬁ H H pneurdl 9)

j=1i=1
Goal : maximize arg maxy L(6, D) = arg maxg log L(0, D)

n

E(Q) |OgL (9 D ZZ'ngneural J ’ 2219)
Jj=1i=1

1. Initialize #° = (61,--- ,6,) at random
2. Compute Vy/l(6) (by back propagation)
3. 01 = 0t + 4, Vyl(0)

Non-convex optimization problem, but often works well in practice

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1

1. Initialize #° at random
2. Compute Vy/(0) (by back propagation)
3. 0t = 0t + a, Vel(0)

19 /26

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1

1. Initialize #° at random
2. Compute Vy/(0) (by back propagation)
3. 0t = 0t + a, Vel(0)

What is the gradient with respect to 6,7

19 /26

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1

1. Initialize #° at random
2. Compute Vy/(0) (by back propagation)
3. 0t = 0t + a, Vel(0)

What is the gradient with respect to 6,7

V@ K Z V@ Z |Og pneurdl | i),' 6)

19 /26

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1

1. Initialize #° at random
2. Compute Vy/(0) (by back propagation)
3. 0t = 0t + a, Vel(0)

What is the gradient with respect to 6,7

VG K Z V@ Z |Og pneurdl | i),v 6 Z V@; |0g pneural(X,'U) ‘X(é),v 91)

j=t

19/26

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)
j=1 i=1

1. Initialize #° at random
2. Compute Vy/(0) (by back propagation)
3. 0t = 0t + a, Vel(0)

What is the gradient with respect to 6,7
VG K Z V@ Z |Og pneurdl i),v 6 Z V@; |0g pneural(X,'U) ‘X(é),v 91)
i= j=1

Each conditional ppeural(Xi|x<;; 0;) can be optimized separately if there is
no parameter sharing.

19 /26

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)
j=1 i=1
1. Initialize #° at random
2. Compute Vy/(0) (by back propagation)
3. 0t = 0t + a, Vel(0)

What is the gradient with respect to 6,7
m
VG é Z VH Z |0g pneuml i),y 6 Z VG; |0g pneural(X,'(J) ‘X(é),'; 91)
i= j=1
Each conditional ppeural(Xi|x<;; 0;) can be optimized separately if there is

no parameter sharing. In practice, parameters 0; are shared (e.g., NADE,
PixelRNN, PixelCNN, etc.)

19 /26

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1
1. Initialize #° at random
2. Compute Vg/(0) (by back propagation)
3. 01 = 0' + o, Vel(0)

Vef(e Z Vg log pneural((J)| (J) ; 91)
Jj=1i=1

20/26

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1
1. Initialize #° at random
2. Compute Vg/(0) (by back propagation)
3. 01 = 0' + o, Vel(0)

Vef(e Z Vg log pneural((J)| (J) ; 91)
Jj=1i=1

What if m = |D| is huge?

20/26

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1
1. Initialize #° at random
2. Compute Vg/(0) (by back propagation)
3. 01 = 0' + o, Vel(0)

Vef(e Z Z Vg log pneural((J)| (J) ; 91)
Jj=1

i=1

What if m = |D| is huge?
Veé(e) = Z ZVG log pneural (J)I (J) 9)

20/26

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1
1. Initialize #° at random
2. Compute Vg/(0) (by back propagation)
3. 01 = 0' + o, Vel(0)

Vef(e Z Z Vg log pneural((J)| (J) ; 91)
Jj=1

i=1

What if m = |D| is huge?
Veé(e) = Z ZVG log pneural (J)I (J) 9)

= mEX(j)ND Z Vg log pnell!‘al(x,'(J)|x(é),'; 91)
i=1

20/26

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1
1. Initialize #° at random
2. Compute Vg/(0) (by back propagation)
3. 01 = 0' + o, Vel(0)

n

Vef(e Z Z Vg log pneural((J)| (J) ; 91)
Jj=1

i=1

What if m = |D| is huge?
Veé(e) = Z ZVG log pneural (J)I (J) 9)

= mEXU)ND Z Vg log pneural(x,'(j)|x(é‘),'; 91)
i=1
Monte Carlo: Sample

V)~ D; 20 /26

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1
1. Initialize #° at random
2. Compute Vg/(0) (by back propagation)
3. 01 = 0' + o, Vel(0)

n

Vef(e Z Z Vg log pneural((J)| (J) ; 91)
Jj=1

i=1

What if m = |D| is huge?
Veé(e) = Z ZVG log pneural (J)I (J) 9)

= mEXU)ND Z Vg log pnell!‘al(x,'(J)|x(é),'; 91)
i=1

Monte Carlo: Sample

XU) ~ DVVGE(G) ~ mz7:1 V@ lOg pneural(J)|x<,y) 20 /26

Empirical Risk and Overfitting

e Empirical risk minimization can easily overfit the data

Empirical Risk and Overfitting

e Empirical risk minimization can easily overfit the data

e Extreme example: The data is the model (remember all
training data).

Empirical Risk and Overfitting

e Empirical risk minimization can easily overfit the data

e Extreme example: The data is the model (remember all
training data).

e Generalization: the data is a sample, usually there is vast amount of
samples that you have never seen. Your model should generalize
well to these “never-seen” samples.

21/26

Empirical Risk and Overfitting

e Empirical risk minimization can easily overfit the data

e Extreme example: The data is the model (remember all
training data).

e Generalization: the data is a sample, usually there is vast amount of
samples that you have never seen. Your model should generalize

well to these “never-seen” samples.

e Thus, we typically restrict the hypothesis space of distributions
that we search over

21/26

Bias-Variance trade off

e If the hypothesis space is very limited, it might not be able to
represent Pgaia, even with unlimited data

N
N
N
(o)}

Bias-Variance trade off

e If the hypothesis space is very limited, it might not be able to
represent Pgaia, even with unlimited data

e This type of limitation is called bias, as the learning is limited
on how close it can approximate the target distribution

N
N
N
(o)}

Bias-Variance trade off

e If the hypothesis space is very limited, it might not be able to
represent Pgaia, even with unlimited data

e This type of limitation is called bias, as the learning is limited
on how close it can approximate the target distribution

e |f we select a highly expressive hypothesis class, we might represent
better the data

Bias-Variance trade off

e If the hypothesis space is very limited, it might not be able to
represent Pgaia, even with unlimited data

e This type of limitation is called bias, as the learning is limited
on how close it can approximate the target distribution

e |f we select a highly expressive hypothesis class, we might represent
better the data

e When we have small amount of data, multiple models can fit
well, or even better than the true model.

Bias-Variance trade off

e If the hypothesis space is very limited, it might not be able to
represent Pgaia, even with unlimited data

e This type of limitation is called bias, as the learning is limited
on how close it can approximate the target distribution

e |f we select a highly expressive hypothesis class, we might represent
better the data

e When we have small amount of data, multiple models can fit
well, or even better than the true model. Moreover, small
perturbations on D will result in very different estimates

Bias-Variance trade off

e If the hypothesis space is very limited, it might not be able to
represent Pgaia, even with unlimited data

e This type of limitation is called bias, as the learning is limited
on how close it can approximate the target distribution

e |f we select a highly expressive hypothesis class, we might represent
better the data

e When we have small amount of data, multiple models can fit
well, or even better than the true model. Moreover, small
perturbations on D will result in very different estimates

e This limitation is call the variance.

Bias-Variance trade off

e If the hypothesis space is very limited, it might not be able to
represent Pgaia, even with unlimited data

e This type of limitation is called bias, as the learning is limited
on how close it can approximate the target distribution

e |f we select a highly expressive hypothesis class, we might represent
better the data

e When we have small amount of data, multiple models can fit
well, or even better than the true model. Moreover, small
perturbations on D will result in very different estimates

e This limitation is call the variance.

Bias-Variance trade off

e There is an inherent bias-variance trade off when selecting the
hypothesis class.

Bias-Variance trade off

e There is an inherent bias-variance trade off when selecting the
hypothesis class. Error in learning due to both things: bias and
variance.

Bias-Variance trade off

e There is an inherent bias-variance trade off when selecting the

hypothesis class. Error in learning due to both things: bias and
variance.

e Hypothesis space: linear relationship

23 /26

Bias-Variance trade off

e There is an inherent bias-variance trade off when selecting the

hypothesis class. Error in learning due to both things: bias and
variance.

e Hypothesis space: linear relationship

e Does it fit well?

23 /26

Bias-Variance trade off

e There is an inherent bias-variance trade off when selecting the

hypothesis class. Error in learning due to both things: bias and
variance.

e Hypothesis space: linear relationship

e Does it fit well? Underfits

23 /26

Bias-Variance trade off

e There is an inherent bias-variance trade off when selecting the
hypothesis class. Error in learning due to both things: bias and
variance.

e Hypothesis space: linear relationship

e Does it fit well? Underfits

e Hypothesis space: high degree polynomial

23 /26

Bias-Variance trade off

e There is an inherent bias-variance trade off when selecting the
hypothesis class. Error in learning due to both things: bias and
variance.

e Hypothesis space: linear relationship

e Does it fit well? Underfits

e Hypothesis space: high degree polynomial

e Overfits

23 /26

Bias-Variance trade off

e There is an inherent bias-variance trade off when selecting the
hypothesis class. Error in learning due to both things: bias and

variance.
e Hypothesis space: linear relationship
e Does it fit well? Underfits o = o

e Hypothesis space: high degree polynomial

e Overfits

e Hypothesis space: low degree polynomial

3/26

Bias-Variance trade off

e There is an inherent bias-variance trade off when selecting the
hypothesis class. Error in learning due to both things: bias and

variance.
e Hypothesis space: linear relationship
e Does it fit well? Underfits o = o

e Hypothesis space: high degree polynomial

e Overfits

e Hypothesis space: low degree polynomial

{,

e Right tradeoff

23 /26

How to avoid overfit ?

e Hard constraints, e.g. by selecting a less expressive model family:

How to avoid overfitting?

e Hard constraints, e.g. by selecting a less expressive model family:

e Smaller neural networks with less parameters

How to avoid overfit ?

e Hard constraints, e.g. by selecting a less expressive model family:

e Smaller neural networks with less parameters
e Weight sharing

How to avoid overfitting?

e Hard constraints, e.g. by selecting a less expressive model family:

e Smaller neural networks with less parameters
e Weight sharing

d(Paata P o)

P data

6eM

24 /26

How to avoid overfit ?

e Hard constraints, e.g. by selecting a less expressive model family:

e Smaller neural networks with less parameters
e Weight sharing

x(j)"’Pdata D@L

j=12,...,m

e Soft preference for “simpler’ models: Occam Razor.
e Augment the objective function with regularization:

objective(x, M) = loss(x, M) + R(M)

24 /26

How to avoid overfitting?

e Hard constraints, e.g. by selecting a less expressive model family:

e Smaller neural networks with less parameters
e Weight sharing

d(Paata P o)

P data

xD~Pgata 0EM

j=12,...,m

e Soft preference for “simpler’ models: Occam Razor.

e Augment the objective function with regularization:
objective(x, M) = loss(x, M) + R(M)

e Evaluate generalization performance on a held-out validation set

24 /26

Conditional generative models

e Suppose we want to generate a set of variables Y given some
others X, e.g., text to speech

Conditional generative models

e Suppose we want to generate a set of variables Y given some
others X, e.g., text to speech
e We concentrate on modeling p(Y|X), and use a conditional
loss function
—log Py(y | x).

Conditional generative models

e Suppose we want to generate a set of variables Y given some
others X, e.g., text to speech

e We concentrate on modeling p(Y|X), and use a conditional
loss function

—log Py(y | x).

e Since the loss function only depends on Py(y | x), suffices to
estimate the conditional distribution, not the joint

25 /26

Conditional generative models

e Suppose we want to generate a set of variables Y given some
others X, e.g., text to speech
e We concentrate on modeling p(Y|X), and use a conditional
loss function
—log Py(y | x).

e Since the loss function only depends on Py(y | x), suffices to
estimate the conditional distribution, not the joint

Brown horse in
grass field

Output caption

Input :image

25/26

e For autoregressive models, it is easy to compute py(x)

e |deally, evaluate in parallel each conditional

lOg pncural(X,'(J) ‘Xg),-; 9,)

e For autoregressive models, it is easy to compute py(x)

e |deally, evaluate in parallel each conditional
log pncural(X,'(J)‘X(i),-; 0;). Not like RNNs.

e For autoregressive models, it is easy to compute py(x)

e |deally, evaluate in parallel each conditional
log pncural(X,'(J)‘X(i),-; 0;). Not like RNNs.

e Natural to train them via maximum likelihood

e For autoregressive models, it is easy to compute py(x)

e |deally, evaluate in parallel each conditional
log pncural(X,'(J)‘Xg),-; 0;). Not like RNNs.

e Natural to train them via maximum likelihood

e Higher log-likelihood doesn’t necessarily mean better looking
samples

26 /26

e For autoregressive models, it is easy to compute py(x)

e |deally, evaluate in parallel each conditional
log pncural(X,'(J)‘Xg),-; 0;). Not like RNNs.

e Natural to train them via maximum likelihood

e Higher log-likelihood doesn’t necessarily mean better looking
samples

e Other ways of measuring similarity are possible (Generative
Adversarial Networks, GANs)

26 /26

