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Learning a generative model

• Given: a training set of examples, e.g., images of dogs

• Goal: learn a probability distribution p(x) over images x

• Generation: If we sample xnew ∼ p(x), xnew should look like a

dog (sampling)

• Density estimation: p(x) should be high if x looks like a dog,

and low otherwise (anomaly detection)

• Unsupervised representation learning: We should be able to

learn what these images have in common, e.g., ears, tail, etc.

(features)

• First question: how to represent pθ(x). Second question: how to

learn it.
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Setting

• Lets assume that the domain is governed by some underlying

distribution Pdata

• We are given a dataset D of m samples from Pdata

• Each sample is an assignment of values to the variables, e.g.,

(Xbank = 1,Xdollar = 0, ...,Y = 1) or pixel intensities.

• The standard assumption is that the data instances are

independent and identically distributed (IID)

• We are also given a family of models M, and our task is to learn

parameters θ of some “good” model Pθ ∈M
• For example, all Bayes nets with a given graph structure, for

all possible choices of the CPD tables

• For example, a FVSBN for all possible choices of the logistic

regression parameters. M = {Pθ, θ ∈ Θ}, θ = concatenation

of all logistic regression coefficients
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Goal of learning

• The goal of learning is to return a model Pθ that precisely captures

the distribution Pdata from which our data was sampled

• This is in general not achievable because of

• limited data only provides a rough approximation of the true

underlying distribution

• computational reasons

• Example. Suppose we represent each image with a vector X of 784

binary variables (black vs. white pixel). How many possible states

(= possible images) in the model? 2784 ≈ 10236. Even 107 training

examples provide extremely sparse coverage!

• We want to select Pθ to construct the ”best” approximation to the

underlying distribution Pdata

• What is “best”?
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What is “best”?

This depends on what we want to do

1. Density estimation: we are interested in the full distribution (so

later we can compute whatever conditional probabilities we want)

2. Specific prediction tasks: we are using the distribution to make a

prediction

• Is this email spam or not?

• Predict next frame in a video

3. Structure or knowledge discovery: we are interested in the model

itself

• How do some genes interact with each other?

• What causes cancer?
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Learning as density estimation

• We want to learn the full distribution so that later we can answer

any probabilistic inference query

• In this setting we can view the learning problem as density

estimation

• We want to construct Pθ as “close” as possible to Pdata (recall we

assume we are given a dataset D of samples from Pdata)

• How do we evaluate ”closeness”?
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KL-divergence

• How should we measure distance between distributions?

• The Kullback-Leibler divergence (KL-divergence) between

two distributions p and q is defined as

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

• D(p ‖ q) ≥ 0 for all p, q, with equality if and only if p = q.
Proof:

Ex∼p

[
− log

q(x)

p(x)

]
≥ − log

(
Ex∼p

[
q(x)

p(x)

])
= − log

(∑
x

p(x)
q(x)

p(x)

)
= 0

• Notice that KL-divergence is asymmetric, i.e.,

D(p‖q) 6= D(q‖p)

• Measures the expected number of extra bits required to

describe samples from p(x) using a code based on q instead

of p
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Detour on KL-divergence

• Knowledge of the data distribution aids compression

• For example, let X1, · · · ,X100 be samples of an unbiased coin.

Roughly 50 heads and 50 tails. Optimal compression scheme

is to record heads as 0 and tails as 1. In expectation, use 1 bit

per sample, and cannot do better
• Suppose the coin is biased, and P[H]� P[T ]. Then it’s more

efficient to uses fewer bits on average to represent heads and
more bits to represent tails, e.g.
• Batch multiple samples together

• Use a short sequence of bits to encode HHHH (common) and

a long sequence for TTTT (rare).

• Like Morse code: E = •, A = •−, Q = −− •−
• KL-divergence: if your data comes from p, but you use a

scheme optimized for q, the divergence DKL(p||q) is the

number of extra bits you’ll need on average
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Learning as density estimation

• We want to learn the full distribution so that later we can answer

any probabilistic inference query

• In this setting we can view the learning problem as density

estimation

• We want to construct Pθ as ”close” as possible to Pdata (recall we

assume we are given a dataset D of samples from Pdata)

• How do we evaluate ”closeness”?

• KL-divergence is one possibility:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
=
∑

x

Pdata(x) log
Pdata(x)

Pθ(x)

• D(Pdata||Pθ) = 0 iff the two distributions are the same.

• It measures the ”compression loss” (in bits) of using Pθ instead of

Pdata.
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Expected log-likelihood

• We can simplify this somewhat:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
= Ex∼Pdata

[logPdata(x)]− Ex∼Pdata
[logPθ(x)]

• The first term does not depend on Pθ.

• Then, minimizing KL divergence is equivalent to maximizing the

expected log-likelihood

• Asks that Pθ assign high probability to instances sampled from

Pdata, so as to reflect the true distribution

• Because of log, samples x where Pθ(x) ≈ 0 weigh heavily in

objective

• Although we can now compare models, since we are ignoring

H(Pdata), we don’t know how close we are to the optimum

• Problem: In general we do not know Pdata.

10 / 26



Expected log-likelihood

• We can simplify this somewhat:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
= Ex∼Pdata

[logPdata(x)]− Ex∼Pdata
[logPθ(x)]

• The first term does not depend on Pθ.

• Then, minimizing KL divergence is equivalent to maximizing the

expected log-likelihood

• Asks that Pθ assign high probability to instances sampled from

Pdata, so as to reflect the true distribution

• Because of log, samples x where Pθ(x) ≈ 0 weigh heavily in

objective

• Although we can now compare models, since we are ignoring

H(Pdata), we don’t know how close we are to the optimum

• Problem: In general we do not know Pdata.

10 / 26



Expected log-likelihood

• We can simplify this somewhat:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
= Ex∼Pdata

[logPdata(x)]− Ex∼Pdata
[logPθ(x)]

• The first term does not depend on Pθ.

• Then, minimizing KL divergence is equivalent to maximizing the

expected log-likelihood

• Asks that Pθ assign high probability to instances sampled from

Pdata, so as to reflect the true distribution

• Because of log, samples x where Pθ(x) ≈ 0 weigh heavily in

objective

• Although we can now compare models, since we are ignoring

H(Pdata), we don’t know how close we are to the optimum

• Problem: In general we do not know Pdata.

10 / 26



Expected log-likelihood

• We can simplify this somewhat:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
= Ex∼Pdata

[logPdata(x)]− Ex∼Pdata
[logPθ(x)]

• The first term does not depend on Pθ.

• Then, minimizing KL divergence is equivalent to maximizing the

expected log-likelihood

• Asks that Pθ assign high probability to instances sampled from

Pdata, so as to reflect the true distribution

• Because of log, samples x where Pθ(x) ≈ 0 weigh heavily in

objective

• Although we can now compare models, since we are ignoring

H(Pdata), we don’t know how close we are to the optimum

• Problem: In general we do not know Pdata.

10 / 26



Expected log-likelihood

• We can simplify this somewhat:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
= Ex∼Pdata

[logPdata(x)]− Ex∼Pdata
[logPθ(x)]

• The first term does not depend on Pθ.

• Then, minimizing KL divergence is equivalent to maximizing the

expected log-likelihood

• Asks that Pθ assign high probability to instances sampled from

Pdata, so as to reflect the true distribution

• Because of log, samples x where Pθ(x) ≈ 0 weigh heavily in

objective

• Although we can now compare models, since we are ignoring

H(Pdata), we don’t know how close we are to the optimum

• Problem: In general we do not know Pdata.

10 / 26



Expected log-likelihood

• We can simplify this somewhat:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
= Ex∼Pdata

[logPdata(x)]− Ex∼Pdata
[logPθ(x)]

• The first term does not depend on Pθ.

• Then, minimizing KL divergence is equivalent to maximizing the

expected log-likelihood

• Asks that Pθ assign high probability to instances sampled from

Pdata, so as to reflect the true distribution

• Because of log, samples x where Pθ(x) ≈ 0 weigh heavily in

objective

• Although we can now compare models, since we are ignoring

H(Pdata), we don’t know how close we are to the optimum

• Problem: In general we do not know Pdata.

10 / 26



Expected log-likelihood

• We can simplify this somewhat:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
= Ex∼Pdata

[logPdata(x)]− Ex∼Pdata
[logPθ(x)]

• The first term does not depend on Pθ.

• Then, minimizing KL divergence is equivalent to maximizing the

expected log-likelihood

• Asks that Pθ assign high probability to instances sampled from

Pdata, so as to reflect the true distribution

• Because of log, samples x where Pθ(x) ≈ 0 weigh heavily in

objective

• Although we can now compare models, since we are ignoring

H(Pdata), we don’t know how close we are to the optimum

• Problem: In general we do not know Pdata.
10 / 26



Maximum likelihood

• Approximate the expected log-likelihood

Ex∼Pdata
[logPθ(x)]

with the empirical log-likelihood:

ED [logPθ(x)] =
1

|D|
∑
x∈D

logPθ(x)

• Maximum likelihood learning is then:

max
Pθ

1

|D|
∑
x∈D

logPθ(x)

• Equivalently, maximize likelihood of the data

Pθ(x(1), · · · , x(m)) =
∏

x∈D Pθ(x)
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Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of

a random variable.

Ex∼P [g(x)] =
∑
x

g(x)P(x)

2. Generate T samples x1, . . . , xT from the distribution P with

respect to which the expectation was taken.

3. Estimate the expected value from the samples using:

ĝ(x1, · · · , xT ) ,
1

T

T∑
t=1

g(xt)

where x1, . . . , xT are independent samples from P. Note: ĝ is

a random variable. Why?
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ĝ(x1, · · · , xT ) ,
1

T

T∑
t=1

g(xt)

where x1, . . . , xT are independent samples from P. Note: ĝ is
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Properties of the Monte Carlo Estimate

• Unbiased:

EP [ĝ ] = EP [g(x)]

• Convergence: By law of large numbers

ĝ =
1

T

T∑
t=1

g(x t)→ EP [g(x)] for T →∞

• Variance:

VP [ĝ ] = VP

[
1

T

T∑
t=1

g(x t)

]
=

VP [g(x)]

T

Thus, variance of the estimator can be reduced by increasing

the number of samples.
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ĝ =
1

T

T∑
t=1

g(x t)→ EP [g(x)] for T →∞

• Variance:
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Example

Single variable example: A biased coin

• Two outcomes: heads (H) and tails (T )

• Data set: Tosses of the biased coin, e.g.,

D = {H,H,T ,H,T}
• Assumption: the process is controlled by a probability

distribution Pdata(x) where x ∈ {H,T}
• Class of models M: all probability distributions over

x ∈ {H,T}.
• Example learning task: How should we choose Pθ(x) from M

if 60 out of 100 tosses are heads in D?
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MLE scoring for the coin example

We represent our model: Pθ(x = H) = θ and Pθ(x = T ) = 1− θ

• Example data: D = {H,H,T ,H,T}
• Likelihood of data =

∏
i Pθ(xi ) = θ · θ · (1− θ) · θ · (1− θ)

• Optimize for θ which makes D most likely. What is the

solution in this case?
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MLE scoring for the coin example: Analytical derivation

Distribution: Pθ(x = H) = θ and Pθ(x = T ) = 1− θ

• More generally, log-likelihood function

L(θ) = θ#heads · (1− θ)#tails

log L(θ) = log(θ#heads · (1− θ)#tails)

= #heads · log(θ) + #tails · log(1− θ)

• MLE Goal: Find θ∗ ∈ [0, 1] such that log L(θ∗) is maximum.

• Differentiate the log-likelihood function with respect to θ and

set the derivative to zero. We get:

θ∗ =
#heads

#heads + #tails
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Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

Pθ(x) =
n∏

i=1

pneural(xi |x<i ; θi )

θ = (θ1, · · · , θn) are the parameters of all the conditionals.

Training data D = {x(1), · · · , x(m)}. Maximum likelihood estimate

of the parameters θ?

• Decomposition of Likelihood function

L(θ,D) =
m∏
j=1

Pθ(x(j)) =
m∏
j=1

n∏
i=1

pneural(x
(j)
i |x

(j)
<i ; θi )

• Goal : maximize arg maxθ L(θ,D) = arg maxθ log L(θ,D)

• We no longer have a closed form solution
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MLE Learning: Gradient Descent

L(θ,D) =
m∏
j=1

Pθ(x(j)) =
m∏
j=1

n∏
i=1

pneural(x
(j)
i |x

(j)
<i ; θi )

Goal : maximize arg maxθ L(θ,D) = arg maxθ log L(θ,D)

`(θ) = log L(θ,D) =
m∑
j=1

n∑
i=1

log pneural(x
(j)
i |x

(j)
<i ; θi )

1. Initialize θ0 = (θ1, · · · , θn) at random

2. Compute ∇θ`(θ) (by back propagation)

3. θt+1 = θt + αt∇θ`(θ)

Non-convex optimization problem, but often works well in practice
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MLE Learning: Stochastic Gradient Descent

`(θ) = log L(θ,D) =
m∑
j=1

n∑
i=1

log pneural(x
(j)
i |x

(j)
<i ; θi )

1. Initialize θ0 at random

2. Compute ∇θ`(θ) (by back propagation)

3. θt+1 = θt + αt∇θ`(θ)

What is the gradient with respect to θi?

∇θi `(θ) =
m∑
j=1

∇θi
n∑

i=1

log pneural(x
(j)
i |x

(j)
<i ; θi ) =

m∑
j=1

∇θi log pneural(x
(j)
i |x

(j)
<i ; θi )

Each conditional pneural(xi |x<i ; θi ) can be optimized separately if there is

no parameter sharing. In practice, parameters θi are shared (e.g., NADE,

PixelRNN, PixelCNN, etc.)
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∇θ`(θ) =
m∑
j=1

n∑
i=1

∇θ log pneural(x
(j)
i |x

(j)
<i ; θi )

What if m = |D| is huge?

∇θ`(θ) = m
m∑
j=1

1

m

n∑
i=1

∇θ log pneural(x
(j)
i |x

(j)
<i ; θi )

= mEx(j)∼D

[
n∑

i=1

∇θ log pneural(x
(j)
i |x

(j)
<i ; θi )

]

Monte Carlo: Sample

x (j) ∼ D;∇θ`(θ) ≈ m
∑n

i=1∇θ log pneural(x
(j)
i |x

(j)
<i ; θi )
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Empirical Risk and Overfitting

• Empirical risk minimization can easily overfit the data

• Extreme example: The data is the model (remember all

training data).

• Generalization: the data is a sample, usually there is vast amount of

samples that you have never seen. Your model should generalize

well to these “never-seen” samples.

• Thus, we typically restrict the hypothesis space of distributions

that we search over
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Bias-Variance trade off

• If the hypothesis space is very limited, it might not be able to

represent Pdata, even with unlimited data

• This type of limitation is called bias, as the learning is limited

on how close it can approximate the target distribution

• If we select a highly expressive hypothesis class, we might represent

better the data

• When we have small amount of data, multiple models can fit

well, or even better than the true model. Moreover, small

perturbations on D will result in very different estimates

• This limitation is call the variance.
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Bias-Variance trade off

• There is an inherent bias-variance trade off when selecting the

hypothesis class.

Error in learning due to both things: bias and

variance.

• Hypothesis space: linear relationship

• Does it fit well? Underfits

• Hypothesis space: high degree polynomial

• Overfits

• Hypothesis space: low degree polynomial

• Right tradeoff
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How to avoid overfitting?

• Hard constraints, e.g. by selecting a less expressive model family:

• Smaller neural networks with less parameters

• Weight sharing

• Soft preference for “simpler” models: Occam Razor.

• Augment the objective function with regularization:

objective(x,M) = loss(x,M) + R(M)

• Evaluate generalization performance on a held-out validation set
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Conditional generative models

• Suppose we want to generate a set of variables Y given some

others X, e.g., text to speech

• We concentrate on modeling p(Y|X), and use a conditional

loss function

− logPθ(y | x).

• Since the loss function only depends on Pθ(y | x), suffices to

estimate the conditional distribution, not the joint
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Recap

• For autoregressive models, it is easy to compute pθ(x)

• Ideally, evaluate in parallel each conditional

log pneural(x
(j)
i |x

(j)
<i ; θi ).

Not like RNNs.

• Natural to train them via maximum likelihood

• Higher log-likelihood doesn’t necessarily mean better looking

samples

• Other ways of measuring similarity are possible (Generative

Adversarial Networks, GANs)
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