
Deep Generative Models

Lecture 2: Representation

Aditya Grover

UCLA

1 / 30



Overview

• What is a generative model?

• Representing probability distributions

• Curse of dimensionality

• Crash course on graphical models (Bayesian networks)

• Generative vs discriminative models

• Neural models

2 / 30



Learning a generative model

• We are given a training set of examples, e.g., images of dogs

• We want to learn a probability distribution p(x) over images x such

that

• Generation: If we sample xnew ∼ p(x), xnew should look like a

dog (sampling)

• Density estimation: p(x) should be high if x looks like a dog,

and low otherwise (anomaly detection)

• Unsupervised representation learning: We should be able to

learn what these images have in common, e.g., ears, tail, etc.

(features)

• First question: how to represent p(x)

3 / 30



Basic discrete distributions

• Bernoulli distribution: (biased) coin flip

• D = {Heads,Tails}
• Specify P(X = Heads) = p. Then P(X = Tails) = 1− p.

• Write: X ∼ Ber(p)

• Sampling: flip a (biased) coin

• Categorical distribution: (biased) m-sided dice

• D = {1, · · · ,m}
• Specify P(Y = i) = pi , such that

∑
pi = 1

• Write: Y ∼ Cat(p1, · · · , pm)

• Sampling: roll a (biased) die

4 / 30



Example of joint distribution

Modeling a single pixel’s color. Three discrete random variables:

• Red Channel R. Val(R) = {0, · · · , 255}
• Green Channel G . Val(G ) = {0, · · · , 255}
• Blue Channel B. Val(B) = {0, · · · , 255}

Sampling from the joint distribution (r , g , b) ∼ p(R,G ,B)

randomly generates a color for the pixel. How many parameters do

we need to specify the joint distribution p(R = r ,G = g ,B = b)?

256 ∗ 256 ∗ 256− 1

5 / 30



Example of joint distribution

• Suppose X1, . . . ,Xn are binary (Bernoulli) random variables,

i.e., Val(Xi ) = {0, 1} = {Black,White}.
• How many possible states?

2× 2× · · · × 2︸ ︷︷ ︸
n times

= 2n

• Sampling from p(x1, . . . , xn) generates an image

• How many parameters to specify the joint distribution

p(x1, . . . , xn) over n binary pixels?

2n − 1
6 / 30



Structure through independence

• If X1, . . . ,Xn are independent, then

p(x1, . . . , xn) = p(x1)p(x2) · · · p(xn)

• How many possible states? 2n

• How many parameters to specify the joint distribution
p(x1, . . . , xn)?
• How many to specify the marginal distribution p(x1)? 1

• 2n entries can be described by just n numbers (if

|Val(Xi )| = 2)!
• Independence assumption is too strong. Model not likely to

be useful
• E.g., each pixel sampled independently will lose digit identity.

7 / 30



Two important rules

1. Chain rule Let S1, . . .Sn be events, p(Si ) > 0.

p(S1∩S2∩· · ·∩Sn) = p(S1)p(S2 | S1) · · · p(Sn | S1∩. . .∩Sn−1)

2. Bayes’ rule Let S1,S2 be events, p(S1) > 0 and p(S2) > 0.

p(S1 | S2) =
p(S1 ∩ S2)

p(S2)
=

p(S2 | S1)p(S1)

p(S2)

8 / 30



Structure through conditional independence

• Using Chain Rule

p(x1, . . . , xn) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xn | x1, · · · , xn−1)

• How many parameters? 1 + 2 + · · ·+ 2n−1 = 2n − 1
• p(x1) requires 1 parameter

• p(x2 | x1 = 0) requires 1 parameter, p(x2 | x1 = 1) requires 1

parameter Total 2 parameters.

• · · ·
• 2n − 1 is still exponential, chain rule does not buy us anything.

• Now suppose Xi+1 ⊥ X1, . . . ,Xi−1|Xi (Markov property), then

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|��x1, x2) · · · p(xn|����x1, · · · ,xn−1)

= p(x1)p(x2|x1)p(x3|x2) · · · p(xn|xn−1)

• How many parameters? 2n − 1. Exponential reduction!

9 / 30



Bayes Network: General Idea

• Use conditional parameterization (instead of joint

parameterization)

• For each random variable Xi , specify p(xi |xAi
) for set XAi

of

random variables

• Then get joint parametrization as

p(x1, . . . , xn) =
∏
i

p(xi |xAi
)

• Need to guarantee it is a legal probability distribution. It has

to correspond to a chain rule factorization, with factors

simplified due to assumed conditional independencies

10 / 30



Bayesian networks

• A Bayesian network is specified by a directed acyclic graph
(DAG) G = (V ,E ) with:

1. One node i ∈ V for each random variable Xi

2. One conditional probability distribution (CPD) per node,

p(xi | xPa(i)), specifying the variable’s probability conditioned

on its parents’ values

• Graph G = (V ,E ) is called the structure of the Bayesian

Network

• Defines a joint distribution:

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))

• Claim: p(x1, . . . xn) is a valid probability distribution because

of ordering implied by DAG

• Economical representation: exponential in |Pa(i)|, not |V |
11 / 30



Example

DAG stands for Directed Acyclic Graph

12 / 30



Example

• Consider the following Bayesian network:

• What is its joint distribution?

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)

13 / 30



Bayesian network structure implies conditional independencies!

• The joint distribution for the above BN factors as

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)

• However, by the chain rule, any distribution can be written as

p(d , i , g , s, l) = p(d)p(i | d)p(g | i , d)p(s | i , d , g)p(l | g , d , i , s)

• Thus, we are assuming the following additional

independencies:

D ⊥ I , S ⊥ {D,G} | I , L ⊥ {I ,D, S} | G .
14 / 30



Summary

• Bayesian networks given by (G ,P) where P is specified as a

set of local conditional probability distributions associated

with G ’s nodes

• Efficient representation using a graph-based data structure

• Computing the probability of any assignment is obtained by

multiplying CPDs

• Can sample from the joint by sampling from the CPDs

according to the DAG ordering

• Can identify some conditional independence properties by

looking at graph properties

• In this class, graphical models will be simple (e.g., only 2 or 3

random vectors)

• Next: generative vs. discriminative; functional

parameterizations

15 / 30



Naive Bayes for single label prediction

• Classify e-mails as spam (Y = 1) or not spam (Y = 0)
• Let 1 : n index the words in our vocabulary (e.g., English)

• Xi = 1 if word i appears in an e-mail, and 0 otherwise

• E-mails are drawn according to some distribution

p(Y ,X1, . . . ,Xn)

• Words are conditionally independent given Y :

• Then

p(y , x1, . . . xn) = p(y)
n∏

i=1

p(xi | y)

16 / 30



Example: naive Bayes for classification

• Classify e-mails as spam (Y = 1) or not spam (Y = 0)
• Let 1 : n index the words in our vocabulary (e.g., English)

• Xi = 1 if word i appears in an e-mail, and 0 otherwise

• E-mails are drawn acc. to some distribution p(Y ,X1, . . . ,Xn)

• Suppose that words are conditionally independent given Y .

p(y , x1, . . . xn) = p(y)
n∏

i=1

p(xi | y)

Estimate parameters from training data. Predict with Bayes

rule:

p(Y = 1 | x1, . . . xn) =
p(Y = 1)

∏n
i=1 p(xi | Y = 1)∑

y={0,1} p(Y = y)
∏n

i=1 p(xi | Y = y)

• Are the independence assumptions made here reasonable?

• Philosophy: Nearly all probabilistic models are “wrong”, but

many are nonetheless useful 17 / 30



Discriminative versus generative models

• Using chain rule p(Y ,X) = p(X | Y )p(Y ) = p(Y | X)p(X).

Corresponding Bayesian networks:

• However, suppose all we need for prediction is p(Y | X)

• In the left model, we need to specify/learn both p(Y ) and

p(X | Y ), then compute p(Y | X) via Bayes rule
• In the right model, it suffices to estimate just the conditional

distribution p(Y | X)
• We never need to model/learn/use p(X)!

• Called a discriminative model because it is only useful for

discriminating Y ’s label when given X
18 / 30



Discriminative versus generative models

• Since X is a random vector, chain rules will give
• p(Y ,X) = p(Y )p(X1 | Y )p(X2 | Y ,X1) · · · p(Xn |

Y ,X1, · · · ,Xn−1)

• p(Y ,X) = p(X1)p(X2 | X1)p(X3 | X1,X2) · · · p(Y |
X1, · · · ,Xn−1,Xn)

We must make the following choices:

1. In the generative model, p(Y ) is simple, but how do we

parameterize p(Xi | Xpa(i),Y )?

2. In the discriminative model, how do we parameterize

p(Y | X)? Here we assume we don’t care about modeling p(X)

because X is always given to us in a classification problem 19 / 30



Naive Bayes

1. For the generative model, assume that Xi ⊥ X−i | Y (naive

Bayes)

20 / 30



Logistic regression

1. For the discriminative model, assume that

p(Y = 1 | x;α) = f (x,α)

2. Not represented as a table anymore. It is a parameterized
function of x (regression)
• Has to be between 0 and 1

• Depend in some simple but reasonable way on x1, · · · , xn
• Completely specified by a vector α of n + 1 parameters

(compact representation)

Linear dependence: let z(α, x) = α0 +
∑n

i=1 αixi .Then,

p(Y = 1 | x;α) = σ(z(α, x)), where σ(z) = 1/(1 + e−z) is called

the logistic function:

z

1

1 + e−z

21 / 30



Logistic regression

Linear dependence: let z(α, x) = α0 +
∑n

i=1 αixi .Then,

p(Y = 1 | x;α) = σ(z(α, x)), where σ(z) = 1/(1 + e−z) is called

the logistic function

1. Decision boundary p(Y = 1 | x;α) > 0.5 is linear in x

2. Equal probability contours are straight lines

3. Probability rate of change has very specific form (third plot)

22 / 30



Discriminative models are powerful

• Logistic model does not assume Xi ⊥ X−i | Y , unlike naive Bayes

• This can make a big difference in many applications

• For example, in spam classification, let X1 = 1[“bank” in e-mail]

and X2 = 1[“account” in e-mail]

• Regardless of whether spam, these always appear together, i.e.

X1 = X2

• Learning in naive Bayes results in p(X1 | Y ) = p(X2 | Y ). Thus,

naive Bayes double counts the evidence

• Learning with logistic regression sets α1 = 0 or α2 = 0, in effect

ignoring it
23 / 30



Generative models are still very useful

Using chain rule p(Y ,X) = p(X | Y )p(Y ) = p(Y | X)p(X).

Corresponding Bayesian networks:

1. Using a conditional model is only possible when X is always observed

• When some Xi variables are unobserved, the generative model

allows us to compute p(Y | Xevidence) by marginalizing over the

unseen variables

24 / 30



Neural Models

1. In discriminative models, we assume that

p(Y = 1 | x;α) = f (x,α)

2. Linear dependence:

• let z(α, x) = α0 +
∑n

i=1 αixi .

• p(Y = 1 | x;α) = σ(z(α, x)), where σ(z) = 1/(1 + e−z) is

the logistic function

• Dependence might be too simple

3. Non-linear dependence: let h(A,b, x) = f (Ax + b) be a
non-linear transformation of the inputs (features).
pNeural(Y = 1 | x;α,A,b) = σ(α0 +

∑h
i=1 αihi )

• More flexible

• More parameters: A,b,α

25 / 30



Neural Models

1. In discriminative models, we assume that

p(Y = 1 | x;α) = f (x,α)

2. Linear dependence: let z(α, x) = α0 +
∑n

i=1 αixi .
p(Y = 1 | x;α) = f (z(α, x)), where f (z) = 1/(1 + e−z) is
the logistic function
• Dependence might be too simple

3. Non-linear dependence: let h(A,b, x) = f (Ax + b) be a
non-linear transformation of the inputs (features).
pNeural(Y = 1 | x;α,A,b) = f (α0 +

∑h
i=1 αihi )

• More flexible

• More parameters: A,b,α

• Can repeat multiple times to get a neural network

26 / 30



Bayesian networks vs neural models

• Using Chain Rule

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

Fully General

• Bayes Net

p(x1, x2, x3, x4) ≈ p(x1)p(x2|x1)p(x3|��x1, x2)p(x4|x1,���x2, x3)

Assumes conditional independencies

• Neural Models

p(x1, x2, x3, x4) ≈ p(x1)p(x2|x1)pNeural(x3|x1, x2)pNeural(x4|x1, x2, x3)

Assume specific functional form for the conditionals. A

sufficiently deep neural net can approximate any function.

27 / 30



Continuous variables

• If X is a continuous random variable, we can usually represent

it using its probability density function pX : R→ R+.

However, we cannot represent this function as a table

anymore. Typically consider parameterized densities:

• Gaussian: X ∼ N (µ, σ) if pX (x) = 1
σ
√
2π
e−(x−µ)

2/2σ2

• Uniform: X ∼ U(a, b) if pX (x) = 1
b−a1[a ≤ x ≤ b]

• Etc.

• If X is a continuous random vector, we can usually represent
it using its joint probability density function:

• Gaussian: if pX (x) = 1√
(2π)n|Σ|

exp
(
− 1

2 (x − µ)TΣ−1(x − µ)
)

• Chain rule, Bayes rule, etc all still apply. For example,

pX ,Y ,Z (x , y , z) = pX (x)pY |X (y | x)pZ |{X ,Y }(z | x , y)

28 / 30



Continuous variables

• This means we can still use Bayesian networks with

continuous (and discrete) variables. Examples:

• Mixture of 2 Gaussians: Network Z → X with factorization
pZ ,X (z , x) = pZ (z)pX |Z (x | z) and

• Z ∼ Bernoulli(p)

• X | (Z = 0) ∼ N (µ0, σ0) , X | (Z = 1) ∼ N (µ1, σ1)

• The parameters are p, µ0, σ0, µ1, σ1

• Network Z → X with factorization
pZ ,X (z , x) = pZ (z)pX |Z (x |z)

• Z ∼ U(a, b)

• X | (Z = z) ∼ N (z , σ)

• The parameters are a, b, σ

29 / 30



Continuous variables

• This means we can still use Bayesian networks with

continuous (and discrete) variables. Examples:

• Variational autoencoder: Network Z → X with
factorization pZ ,X (z , x) = pZ (z)pX |Z (x | z) and

• Z ∼ N (0, 1)

• X | (Z = z) ∼ N (µθ(z), eσφ(z)) where µθ : R→ R and σφ are

neural networks with parameters (weights) θ, φ respectively

• Note: Even if µθ, σφ are very deep (flexible), functional form

is still Gaussian

30 / 30


