Deep Generative Models
 Lecture 2: Representation

Aditya Grover
UCLA

Overview

- What is a generative model?
- Representing probability distributions
- Curse of dimensionality
- Crash course on graphical models (Bayesian networks)
- Generative vs discriminative models
- Neural models

Learning a generative model

- We are given a training set of examples, e.g., images of dogs

Model family

- We want to learn a probability distribution $p(x)$ over images x such that
- Generation: If we sample $x_{\text {new }} \sim p(x), x_{\text {new }}$ should look like a dog (sampling)
- Density estimation: $p(x)$ should be high if x looks like a dog, and low otherwise (anomaly detection)
- Unsupervised representation learning: We should be able to learn what these images have in common, e.g., ears, tail, etc. (features)

Basic discrete distributions

- Bernoulli distribution: (biased) coin flip
- $D=\{$ Heads, Tails $\}$
- Specify $P(X=$ Heads $)=p$. Then $P(X=$ Tails $)=1-p$.
- Write: $X \sim \operatorname{Ber}(p)$
- Sampling: flip a (biased) coin
- Categorical distribution: (biased) m-sided dice
- $D=\{1, \cdots, m\}$
- Specify $P(Y=i)=p_{i}$, such that $\sum p_{i}=1$
- Write: $Y \sim \operatorname{Cat}\left(p_{1}, \cdots, p_{m}\right)$
- Sampling: roll a (biased) die

Example of joint distribution

Modeling a single pixel's color. Three discrete random variables:

- Red Channel R. $\operatorname{Val}(R)=\{0, \cdots, 255\}$
- Green Channel G. $\operatorname{Val}(G)=\{0, \cdots, 255\}$
- Blue Channel $B . \operatorname{Val}(B)=\{0, \cdots, 255\}$

Sampling from the joint distribution $(r, g, b) \sim p(R, G, B)$
randomly generates a color for the pixel. How many parameters do we need to specify the joint distribution $p(R=r, G=g, B=b)$?

$$
256 * 256 * 256-1
$$

Example of joint distribution

- Suppose X_{1}, \ldots, X_{n} are binary (Bernoulli) random variables, i.e., $\operatorname{Val}\left(X_{i}\right)=\{0,1\}=\{$ Black, White $\}$.
- How many possible states?

$$
\underbrace{2 \times 2 \times \cdots \times 2}_{n \text { times }}=2^{n}
$$

- Sampling from $p\left(x_{1}, \ldots, x_{n}\right)$ generates an image
- How many parameters to specify the joint distribution $p\left(x_{1}, \ldots, x_{n}\right)$ over n binary pixels?

$$
2^{n}-1
$$

Structure through independence

- If X_{1}, \ldots, X_{n} are independent, then

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \cdots p\left(x_{n}\right)
$$

- How many possible states? 2^{n}
- How many parameters to specify the joint distribution $p\left(x_{1}, \ldots, x_{n}\right)$?
- How many to specify the marginal distribution $p\left(x_{1}\right)$? 1
- 2^{n} entries can be described by just n numbers (if

$$
\left.\left|\operatorname{Val}\left(X_{i}\right)\right|=2\right)!
$$

- Independence assumption is too strong. Model not likely to be useful
- E.g., each pixel sampled independently will lose digit identity.

Two important rules

1. Chain rule Let $S_{1}, \ldots S_{n}$ be events, $p\left(S_{i}\right)>0$.

$$
p\left(S_{1} \cap S_{2} \cap \cdots \cap S_{n}\right)=p\left(S_{1}\right) p\left(S_{2} \mid S_{1}\right) \cdots p\left(S_{n} \mid S_{1} \cap \ldots \cap S_{n-1}\right)
$$

2. Bayes' rule Let S_{1}, S_{2} be events, $p\left(S_{1}\right)>0$ and $p\left(S_{2}\right)>0$.

$$
p\left(S_{1} \mid S_{2}\right)=\frac{p\left(S_{1} \cap S_{2}\right)}{p\left(S_{2}\right)}=\frac{p\left(S_{2} \mid S_{1}\right) p\left(S_{1}\right)}{p\left(S_{2}\right)}
$$

Structure through conditional independence

- Using Chain Rule

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{n} \mid x_{1}, \cdots, x_{n-1}\right)
$$

- How many parameters? $1+2+\cdots+2^{n-1}=2^{n}-1$
- $p\left(x_{1}\right)$ requires 1 parameter
- $p\left(x_{2} \mid x_{1}=0\right)$ requires 1 parameter, $p\left(x_{2} \mid x_{1}=1\right)$ requires 1 parameter Total 2 parameters.
- $2^{n}-1$ is still exponential, chain rule does not buy us anything.
- Now suppose $X_{i+1} \perp X_{1}, \ldots, X_{i-1} \mid X_{i}$ (Markov property), then

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{n}\right) & =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{n} \mid x_{1}, \cdots x_{n-1}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \cdots p\left(x_{n} \mid x_{n-1}\right)
\end{aligned}
$$

- How many parameters? $2 n-1$. Exponential reduction!

Bayes Network: General Idea

- Use conditional parameterization (instead of joint parameterization)
- For each random variable X_{i}, specify $p\left(x_{i} \mid \mathbf{x}_{\mathbf{A}_{\mathbf{i}}}\right)$ for set $\mathbf{X}_{\mathbf{A}_{\mathbf{i}}}$ of random variables
- Then get joint parametrization as

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} p\left(x_{i} \mid \mathbf{x}_{\mathbf{A}_{\mathbf{i}}}\right)
$$

- Need to guarantee it is a legal probability distribution. It has to correspond to a chain rule factorization, with factors simplified due to assumed conditional independencies

Bayesian networks

- A Bayesian network is specified by a directed acyclic graph (DAG) $G=(V, E)$ with:

1. One node $i \in V$ for each random variable X_{i}
2. One conditional probability distribution (CPD) per node, $p\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right)$, specifying the variable's probability conditioned on its parents' values

- Graph $G=(V, E)$ is called the structure of the Bayesian Network
- Defines a joint distribution:

$$
p\left(x_{1}, \ldots x_{n}\right)=\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\operatorname{Pa}(i)}\right)
$$

- Claim: $p\left(x_{1}, \ldots x_{n}\right)$ is a valid probability distribution because of ordering implied by DAG
- Economical representation: exponential in $|\mathrm{Pa}(i)|$, not $|V|$

Example

DAG stands for Directed Acyclic Graph

Example

- Consider the following Bayesian network:

- What is its joint distribution?

$$
\begin{aligned}
p\left(x_{1}, \ldots x_{n}\right) & =\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\operatorname{Pa}(i)}\right) \\
p(d, i, g, s, l) & =p(d) p(i) p(g \mid i, d) p(s \mid i) p(I \mid g)
\end{aligned}
$$

Bayesian network structure implies conditional independencies!

Koller and Friedman, 2009

- The joint distribution for the above BN factors as

$$
p(d, i, g, s, l)=p(d) p(i) p(g \mid i, d) p(s \mid i) p(I \mid g)
$$

- However, by the chain rule, any distribution can be written as $p(d, i, g, s, l)=p(d) p(i \mid d) p(g \mid i, d) p(s \mid i, d, g) p(I \mid g, d, i, s)$
- Thus, we are assuming the following additional independencies:
$D \perp I$,
$S \perp\{D, G\} \mid I$,
$L \perp\{I, D, S\} \mid G$.

Summary

- Bayesian networks given by (G, P) where P is specified as a set of local conditional probability distributions associated with G's nodes
- Efficient representation using a graph-based data structure
- Computing the probability of any assignment is obtained by multiplying CPDs
- Can sample from the joint by sampling from the CPDs according to the DAG ordering
- Can identify some conditional independence properties by looking at graph properties
- In this class, graphical models will be simple (e.g., only 2 or 3 random vectors)
- Next: generative vs. discriminative; functional parameterizations

Naive Bayes for single label prediction

- Classify e-mails as spam $(Y=1)$ or not spam $(Y=0)$
- Let $1: n$ index the words in our vocabulary (e.g., English)
- $X_{i}=1$ if word i appears in an e-mail, and 0 otherwise
- E-mails are drawn according to some distribution $p\left(Y, X_{1}, \ldots, X_{n}\right)$
- Words are conditionally independent given Y :

Features

- Then

$$
p\left(y, x_{1}, \ldots x_{n}\right)=p(y) \prod_{i=1}^{n} p\left(x_{i} \mid y\right)
$$

Example: naive Bayes for classification

- Classify e-mails as spam $(Y=1)$ or not spam $(Y=0)$
- Let $1: n$ index the words in our vocabulary (e.g., English)
- $X_{i}=1$ if word i appears in an e-mail, and 0 otherwise
- E-mails are drawn acc. to some distribution $p\left(Y, X_{1}, \ldots, X_{n}\right)$
- Suppose that words are conditionally independent given Y.

$$
p\left(y, x_{1}, \ldots x_{n}\right)=p(y) \prod_{i=1}^{n} p\left(x_{i} \mid y\right)
$$

Estimate parameters from training data. Predict with Bayes rule:

$$
p\left(Y=1 \mid x_{1}, \ldots x_{n}\right)=\frac{p(Y=1) \prod_{i=1}^{n} p\left(x_{i} \mid Y=1\right)}{\sum_{y=\{0,1\}} p(Y=y) \prod_{i=1}^{n} p\left(x_{i} \mid Y=y\right)}
$$

- Are the independence assumptions made here reasonable?
- Philosophy: Nearly all probabilistic models are "wrong", but many are nonetheless useful

Discriminative versus generative models

- Using chain rule $p(Y, \mathbf{X})=p(\mathbf{X} \mid Y) p(Y)=p(Y \mid \mathbf{X}) p(\mathbf{X})$.

Corresponding Bayesian networks:

Generative

Discriminative

- However, suppose all we need for prediction is $p(Y \mid \mathbf{X})$
- In the left model, we need to specify/learn both $p(Y)$ and $p(\mathbf{X} \mid Y)$, then compute $p(Y \mid \mathbf{X})$ via Bayes rule
- In the right model, it suffices to estimate just the conditional distribution $p(Y \mid \mathbf{X})$
- We never need to model/learn/use $p(\mathbf{X})$!
- Called a discriminative model because it is only useful for discriminating Y 's label when given \mathbf{X}

Discriminative versus generative models

- Since X is a random vector, chain rules will give
- $p(Y, \mathbf{X})=p(Y) p\left(X_{1} \mid Y\right) p\left(X_{2} \mid Y, X_{1}\right) \cdots p\left(X_{n} \mid\right.$
$\left.Y, X_{1}, \cdots, X_{n-1}\right)$
- $p(Y, \mathbf{X})=p\left(X_{1}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{3} \mid X_{1}, X_{2}\right) \cdots p(Y$
$\left.X_{1}, \cdots, X_{n-1}, X_{n}\right)$

Generative

Discriminative

We must make the following choices:

1. In the generative model, $p(Y)$ is simple, but how do we parameterize $p\left(X_{i} \mid \mathbf{X}_{p a(i)}, Y\right)$?
2. In the discriminative model, how do we parameterize $p(Y \mid \mathbf{X})$? Here we assume we don't care about modeling $p(\mathbf{X})$ because \mathbf{X} is always given to us in a classification problem

Naive Bayes

1. For the generative model, assume that $X_{i} \perp \mathbf{X}_{-i} \mid Y$ (naive Bayes)

Logistic regression

1. For the discriminative model, assume that

$$
p(Y=1 \mid \mathbf{x} ; \boldsymbol{\alpha})=f(\mathbf{x}, \boldsymbol{\alpha})
$$

2. Not represented as a table anymore. It is a parameterized function of \mathbf{x} (regression)

- Has to be between 0 and 1
- Depend in some simple but reasonable way on x_{1}, \cdots, x_{n}
- Completely specified by a vector α of $n+1$ parameters (compact representation)
Linear dependence: let $z(\boldsymbol{\alpha}, \mathbf{x})=\alpha_{0}+\sum_{i=1}^{n} \alpha_{i} x_{i}$. Then, $p(Y=1 \mid \mathbf{x} ; \boldsymbol{\alpha})=\sigma(z(\boldsymbol{\alpha}, \mathbf{x}))$, where $\sigma(z)=1 /\left(1+e^{-z}\right)$ is called the logistic function:

Logistic regression

Linear dependence: let $z(\boldsymbol{\alpha}, \mathbf{x})=\alpha_{0}+\sum_{i=1}^{n} \alpha_{i} x_{i}$. Then, $p(Y=1 \mid \mathbf{x} ; \boldsymbol{\alpha})=\sigma(z(\boldsymbol{\alpha}, \mathbf{x}))$, where $\sigma(z)=1 /\left(1+e^{-z}\right)$ is called the logistic function

Contours of equal probability defined by $\boldsymbol{\alpha}$

Probability map defined by $\boldsymbol{\alpha}$

1. Decision boundary $p(Y=1 \mid \mathbf{x} ; \boldsymbol{\alpha})>0.5$ is linear in \mathbf{x}
2. Equal probability contours are straight lines
3. Probability rate of change has very specific form (third plot)

Discriminative models are powerful

Discriminative (logistic regression)

- Logistic model does not assume $X_{i} \perp \mathbf{X}_{-i} \mid Y$, unlike naive Bayes
- This can make a big difference in many applications
- For example, in spam classification, let $X_{1}=1$ ["bank" in e-mail] and $X_{2}=1$ ["account" in e-mail]
- Regardless of whether spam, these always appear together, i.e. $X_{1}=X_{2}$
- Learning in naive Bayes results in $p\left(X_{1} \mid Y\right)=p\left(X_{2} \mid Y\right)$. Thus, naive Bayes double counts the evidence
- Learning with logistic regression sets $\alpha_{1}=0$ or $\alpha_{2}=0$, in effect ignoring it

Generative models are still very useful

Using chain rule $p(Y, \mathbf{X})=p(\mathbf{X} \mid Y) p(Y)=p(Y \mid \mathbf{X}) p(\mathbf{X})$.
Corresponding Bayesian networks:

Generative Discriminative

1. Using a conditional model is only possible when \mathbf{X} is always observed

- When some X_{i} variables are unobserved, the generative model allows us to compute $p\left(Y \mid \mathbf{X}_{\text {evidence }}\right)$ by marginalizing over the unseen variables

Neural Models

1. In discriminative models, we assume that

$$
p(Y=1 \mid \mathbf{x} ; \boldsymbol{\alpha})=f(\mathbf{x}, \boldsymbol{\alpha})
$$

2. Linear dependence:

- let $z(\boldsymbol{\alpha}, \mathbf{x})=\alpha_{0}+\sum_{i=1}^{n} \alpha_{i} x_{i}$.
- $p(Y=1 \mid \mathbf{x} ; \boldsymbol{\alpha})=\sigma(z(\boldsymbol{\alpha}, \mathbf{x}))$, where $\sigma(z)=1 /\left(1+e^{-z}\right)$ is the logistic function
- Dependence might be too simple

3. Non-linear dependence: let $\mathbf{h}(A, \mathbf{b}, \mathbf{x})=f(A \mathbf{x}+\mathbf{b})$ be a non-linear transformation of the inputs (features). $p_{\text {Neural }}(Y=1 \mid \mathbf{x} ; \boldsymbol{\alpha}, A, \mathbf{b})=\sigma\left(\alpha_{0}+\sum_{i=1}^{h} \alpha_{i} h_{i}\right)$

- More flexible
- More parameters: $A, \mathbf{b}, \boldsymbol{\alpha}$

Neural Models

1. In discriminative models, we assume that

$$
p(Y=1 \mid \mathbf{x} ; \boldsymbol{\alpha})=f(\mathbf{x}, \boldsymbol{\alpha})
$$

2. Linear dependence: let $z(\boldsymbol{\alpha}, \mathbf{x})=\alpha_{0}+\sum_{i=1}^{n} \alpha_{i} x_{i}$.
$p(Y=1 \mid \mathbf{x} ; \boldsymbol{\alpha})=f(z(\boldsymbol{\alpha}, \mathbf{x}))$, where $f(z)=1 /\left(1+e^{-z}\right)$ is the logistic function

- Dependence might be too simple

3. Non-linear dependence: let $\mathbf{h}(A, \mathbf{b}, \mathbf{x})=f(A \mathbf{x}+\mathbf{b})$ be a non-linear transformation of the inputs (features). $p_{\text {Neural }}(Y=1 \mid \mathbf{x} ; \boldsymbol{\alpha}, A, \mathbf{b})=f\left(\alpha_{0}+\sum_{i=1}^{h} \alpha_{i} h_{i}\right)$

- More flexible
- More parameters: $A, \mathbf{b}, \boldsymbol{\alpha}$
- Can repeat multiple times to get a neural network

Bayesian networks vs neural models

- Using Chain Rule

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)
$$

Fully General

- Bayes Net

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \approx p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{1}, \underline{x}_{2}, x_{3}\right)
$$

Assumes conditional independencies

- Neural Models
$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \approx p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p_{\text {Neural }}\left(x_{3} \mid x_{1}, x_{2}\right) p_{\text {Neural }}\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)$
Assume specific functional form for the conditionals. A sufficiently deep neural net can approximate any function.

Continuous variables

- If X is a continuous random variable, we can usually represent it using its probability density function $p_{X}: \mathbb{R} \rightarrow \mathbb{R}^{+}$. However, we cannot represent this function as a table anymore. Typically consider parameterized densities:
- Gaussian: $X \sim \mathcal{N}(\mu, \sigma)$ if $p_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$
- Uniform: $X \sim \mathcal{U}(a, b)$ if $p_{X}(x)=\frac{1}{b-a} 1[a \leq x \leq b]$
- Etc.
- If \boldsymbol{X} is a continuous random vector, we can usually represent it using its joint probability density function:
- Gaussian: if $p_{X}(x)=\frac{1}{\sqrt{(2 \pi)^{n}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(x-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(x-\boldsymbol{\mu})\right)$
- Chain rule, Bayes rule, etc all still apply. For example,

$$
p_{X, Y, Z}(x, y, z)=p_{X}(x) p_{Y \mid X}(y \mid x) p_{Z \mid\{X, Y\}}(z \mid x, y)
$$

Continuous variables

- This means we can still use Bayesian networks with continuous (and discrete) variables. Examples:
- Mixture of 2 Gaussians: Network $Z \rightarrow X$ with factorization $p_{Z, X}(z, x)=p_{Z}(z) p_{X \mid Z}(x \mid z)$ and
- $Z \sim \operatorname{Bernoulli}(p)$
- $X\left|(Z=0) \sim \mathcal{N}\left(\mu_{0}, \sigma_{0}\right), X\right|(Z=1) \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}\right)$
- The parameters are $p, \mu_{0}, \sigma_{0}, \mu_{1}, \sigma_{1}$
- Network $Z \rightarrow X$ with factorization

$$
p_{Z, X}(z, x)=p_{Z}(z) p_{X \mid Z}(x \mid z)
$$

- $Z \sim \mathcal{U}(a, b)$
- $X \mid(Z=z) \sim \mathcal{N}(z, \sigma)$
- The parameters are a, b, σ

Continuous variables

- This means we can still use Bayesian networks with continuous (and discrete) variables. Examples:
- Variational autoencoder: Network $Z \rightarrow X$ with factorization $p_{Z, X}(z, x)=p_{Z}(z) p_{X \mid Z}(x \mid z)$ and
- $Z \sim \mathcal{N}(0,1)$
- $X \mid(Z=z) \sim \mathcal{N}\left(\mu_{\theta}(z), e^{\sigma_{\phi}(z)}\right)$ where $\mu_{\theta}: \mathbb{R} \rightarrow \mathbb{R}$ and σ_{ϕ} are neural networks with parameters (weights) θ, ϕ respectively
- Note: Even if $\mu_{\theta}, \sigma_{\phi}$ are very deep (flexible), functional form is still Gaussian

