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Story so far

e Representation: Latent variable vs. fully observed

e Objective function and optimization algorithm: Many
divergences and distances optimized via likelihood-free (two
sample test) or likelihood based methods (KL divergence)

e Each have Pros and Cons

Plan for today: Combining models



Variational Autoencoder

Image x

A mixture of an infinite number of Gaussians:

z~N(0,/)
2. p(x|z) =N (no(z), Lo(z)) where pp,Xp are neural networks
3. p(x | z) and p(z) usually simple, e.g., Gaussians or

[y

conditionally independent Bernoulli vars (i.e., pixel values
chosen independently given z)
4. ldea: increase complexity using an autoregressive model



PixelVAE (Gulrajani et al.,2017)
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e z is a feature map with the same resolution as the image x

e Autoregressive structure: p(x | z) =[], p(xi | x1,- - ,%i—1,2)

e p(x|z)is a PixelCNN
e Prior p(z) can also be autoregressive

e Learns features (unlike PixelCNN); computationally cheaper than
PixelCNN (shallower)



Autoregressive flow

e Flow model, the marginal likelihood p(x) is given by

ot <8f9_81(x)>

where pz(z) is typically simple (e.g., a Gaussian). More

px(x;0) = pz (f;*(x))

complex prior?
e Prior pz(z) can be autoregressive
pz(z) =11;ip(zi | 21, zi1).
e Autoregressive models are flows. Just another MAF layer.
e See also neural autoregressive flows (Huang et al., ICML-18) 5,19



VAE + Flow Model

¢ -- Q' 0
)

log p(x;:0) > > q(zlx; ¢)log p(z,x; 0) + H(a(z|x; $)) = L(x; 0, $)
z ELBO
logp(x;0) = L(x;0,¢)+ Dki(a(z | x; ¢)||p(z|x; 0))

Gap between true log-likelihood and ELBO
e g(z|x; ¢) is often too simple (Gaussian) compared to the true

posterior p(z|x; 6), hence ELBO bound is loose

e ldea: Make posterior more flexible: 2’ ~ q(Z'|x; ¢),
z = fy(Z') for an invertible fy (Rezende and Mohamed, 2015;
Kingma et al., 2016)

e Still easy to sample from, and can evaluate density.



VAE + Flow Model
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(a) Prior distribution (b) Posteriors in standard VAE (c) Posteriors in VAE with IAF

Posterior approximation is more flexible, hence we can get tighter
ELBO (closer to true log-likelihood).



Multimodal variants

¥ S
(c) Fill in the Blank (d) Removing Watermarks
Wu and Goodman, 2018

e Goal: Learn a joint distribution over the two domains p(xi, x2),
e.g., color and gray-scale images. Can use a VAE style model:

e Learn py(x1,x2), use inference nets qy(z | x1), go(z | x2),

q¢(z ‘ X17X2)'
19
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Variational RNN

e Goal: Learn a joint distribution over a sequence p(xi,- - ,xT)

e VAE for sequential data, using latent variables z;,--- , zt. Instead
of training separate VAEs z; — x;, train a joint model:

.
px<t,2<7) = [ [ Plxe | z< e, x<t)P(t | 2<ts x<1)

Rl

(a) Prior ) Generation ) Recurrence (d) Inference

Chung et al, 2016
e Use RNNs to model the conditionals (similar to PixelRNN)

e Use RNNs for inference q(z<7|x<7) = H;l q(z¢ | z<r, X<t)

e Train like VAE to maximize ELBO. Conceptually similar to
Pixel VAE.



Combining losses

fo

)

e Flow model, the marginal likelihood p(x) is given by

det <8f9_81(x)> ‘

e Can also be thought of as the generator of a GAN

px(x:6) = pz (f;1(x))

e Should we train by ming Dk (pdata, Pg) or ming JSD(pgatas Po)?
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FlowGAN
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Although Dk (pdata, pg) = 0 if and only if JSD(pgata, pg) = 0,
optimizing one does not necessarily optimize the other. If z,x have
same dimensions, can optimize

ming KL(Pdata; Po) + AISD(Pdata, Po)

Objective | Inception Score | Test NLL (in bits/dim)
MLE 2.92 3.54
ADV 5.76 8.53
Hybrid (A = 1) 3.90 4.91
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Adversarial Autoencoder (VAE + GAN)

¢>9

log p(x; 0) = L(x; 0, ¢) +Drk(a(z | x; ¢)||p(zx; 0))
ELBO
Expanea [£(X:0, 0)] = Ex~pgyi, [log p(x; 0) — Dic(q(z | x; 8)||p(z]x; 6))]
N——— —

~training obj.

up to const.

= — Dru(pdata(X)[|P(x; 0)) = Ex~pyars [Dre(a(z | x; )l p(2]%;

equiv. to MLE

e Note: regularized maximum likelihood estimation (Shu et al,
Amortized inference regularization)

e Can add in a GAN objective —JSD(paata, p(x; 0)) to get sharper
samples, i.e., discriminator attempting to distinguish VAE samples
from real ones. 12/19



An alternative interpretation
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Exmpgs [£(x: 0, )] - Expe 08 P(x: 0) — Dice(alz | x; )| p(zlx; 0))]
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~Atraining obj.

up to const.

= =D (Pdata(X)||P(X; 0)) — Ex~pyyy, [Pri(a(z | x; ¢)lIp(z]x; 0))]
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= p(zlx; 0)
] q(z | %; ¢)Pdata(x)
_ Z Pota(X) (Z q(z | x; ¢) log W)
Pdata(x)q(z | % ¢)
—Zpdata x)q(z | x; ¢) lo; W
= —DKL(Pdata(X)Q(Z | x; @) Il p(x; 0)p(z|x; 0))

q(z,%;¢) p(z,x;0)
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An alternative interpretation

¢9
O

Exmpgata [£(X: 0, 9)] = =Dk (Paata(x)a(z | x; 8) || p(x; 8) p(2|x; 0))
——

ELBO q(z,x;¢) p(z,x;0)

e Optimizing ELBO is same as KL matching the inference distribution
q(z,x; ¢) to the generative distribution p(z,x; 0) = p(z)p(x|z; 0)
e Intuition: p(x; 0)p(z|x; 0) = paata(x)q(z | x; @) if
il pdata(x) = P(X; 9)
2. q(z | x; 9) = p(z|x; 0) for all x
3. Hence we get the VAE objective:

—Dki(Pdata(X)[|P(%; 0)) = Expunes [Dii(a(z | x; @) p(2x; 0))]
e Many other variants are possible! VAE + GAN:

—JSD(Pdata()|P(x; 0)) = Dkt (Pdata(X) 1P(X; 0)) = Ex~paues [Dri(a(z | x; &) [IP(zIx: )]



Adversarial Autoencoder (VAE + GAN)

¢9
O

Exmpgata [£(X: 0, 9)] = =Dk (Paata(x)a(z | x; 8) || p(x; 8) p(2|x; 0))
——

ELBO q(z,x;¢) p(z,x;0)

e Optimizing ELBO is the same as matching the inference distribution
q(z,x; ¢) to the generative distribution p(z, x; 6)

e Alternative factorization: p(z)p(x|z;0) = q(z; ¢)q(x | z; ¢) if

1. q(z: ¢) = p(z)

2. q(x| z;¢) = p(x|z;0) for all z

3. We get an equivalent form of the VAE objective:

—Dki(a(z: 9)I1P(2)) — Eznq(z:g) [Dri(a(x | 2; 9) | p(x|2; 0))]

e Other variants are possible. E.g., can add —JSD(q(z; ¢)||p(z)) to

match features in latent space (Zhao et al; Makhzani et al)
15/19



Information Preference

¢>9

Exmpana [£(x: 0, 8)] = —Dict (paata(x)q( | x: ) || p(x: 0)p(2]x; 0))
N —
ELBO q(z,x;0) p(z,x;0)

e ELBO is optimized as long as q(z,x; ¢) = p(z, x; 8). Many solutions
are possible! For example,
1. p(z,x;0) = p(z)p(x|z; 0) = p(z)Ppdata(x)
2. q(z,%;9) = Pdata(x)q(2|%; &) = Pdata(x)P(2)
3. Note x and z are independent. z carries no information about

x. This happens in practice when p(x|z; 8) is too flexible, like
Pixel CNN.

e [ssue: System of equations with many more variables than
constraints 16 /19



Information Maximizing

e Explicitly add a mutual information term to the objective
—Dki(pdata(x)a(z | x; @) || p(x; 0)p(z]x; 0)) + oMl (x, 2)

q(z,x;¢) P(z,%;6)

e Ml intuitively measures how far x and z are from being independent
MI(x,z) = Diw (p(z,x; 0)||p(z)p(x; 0))

e InfoGAN (Chen et al, 2016) used to learn meaningful
(disentangled?) representations of the data

MI(x,2) — Exps [P (po(2|x) 195 (2]x))] = JSD(paata(x) | po(x))
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B-VAE

Model proposed to learn disentangled features / latent variables
(Higgins, 2016)

—Eq,(x,2)[108 Po(X[2)] + BEx~py.., [Dri(qs(z[x)[[p(2))]

It is a VAE with scaled up KL divergence term (8 > 1). This is
equivalent (up to constants) to the following objective:

(8 = 1)MI(x; 2) + BDki(qs(2)[P(2))) + Eqy(2)[Prr(as(x|2) ]| po(x(2))]

See The Information Autoencoding Family: A Lagrangian
Perspective on Latent Variable Generative Models for more

examples.



Conclusion

e We have covered several useful building blocks: autoregressive,
latent variable models, flow models, GANs, EBMs

e Can be combined in many ways to achieve different tradeoffs

e Which one is best? Evaluation is tricky. Still largely empirical
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