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Summary

Story so far

• Representation: Latent variable vs. fully observed

• Objective function and optimization algorithm: Many

divergences and distances optimized via likelihood-free (two

sample test) or likelihood based methods (KL divergence)

• Each have Pros and Cons

Plan for today: Combining models
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Variational Autoencoder

A mixture of an infinite number of Gaussians:

1. z ∼ N (0, I )

2. p(x | z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

3. p(x | z) and p(z) usually simple, e.g., Gaussians or

conditionally independent Bernoulli vars (i.e., pixel values

chosen independently given z)

4. Idea: increase complexity using an autoregressive model
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PixelVAE (Gulrajani et al.,2017)

• z is a feature map with the same resolution as the image x

• Autoregressive structure: p(x | z) =
∏

i p(xi | x1, · · · , xi−1, z)

• p(x | z) is a PixelCNN

• Prior p(z) can also be autoregressive

• Learns features (unlike PixelCNN); computationally cheaper than

PixelCNN (shallower)
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Autoregressive flow

Z

X

fθ

• Flow model, the marginal likelihood p(x) is given by

pX (x; θ) = pZ
(
f−1θ (x)

) ∣∣∣∣∣det
(
∂f−1θ (x)

∂x

)∣∣∣∣∣
where pZ (z) is typically simple (e.g., a Gaussian). More

complex prior?

• Prior pZ (z) can be autoregressive

pZ (z) =
∏

i p(zi | z1, · · · , zi−1).

• Autoregressive models are flows. Just another MAF layer.

• See also neural autoregressive flows (Huang et al., ICML-18) 5 / 19



VAE + Flow Model

φ z

x

θ

log p(x; θ) ≥
∑

z

q(z|x;φ) log p(z, x; θ) + H(q(z|x;φ)) = L(x; θ, φ)︸ ︷︷ ︸
ELBO

log p(x; θ) = L(x; θ, φ) + DKL(q(z | x;φ)‖p(z|x; θ))︸ ︷︷ ︸
Gap between true log-likelihood and ELBO

• q(z|x;φ) is often too simple (Gaussian) compared to the true

posterior p(z|x; θ), hence ELBO bound is loose

• Idea: Make posterior more flexible: z′ ∼ q(z′|x;φ),

z = fφ′(z′) for an invertible fφ′ (Rezende and Mohamed, 2015;

Kingma et al., 2016)

• Still easy to sample from, and can evaluate density.
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VAE + Flow Model

Posterior approximation is more flexible, hence we can get tighter

ELBO (closer to true log-likelihood).
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Multimodal variants

• Goal: Learn a joint distribution over the two domains p(x1, x2),

e.g., color and gray-scale images. Can use a VAE style model:

z

x1 x2

• Learn pθ(x1, x2), use inference nets qφ(z | x1), qφ(z | x2),

qφ(z | x1, x2).
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Variational RNN

• Goal: Learn a joint distribution over a sequence p(x1, · · · , xT )

• VAE for sequential data, using latent variables z1, · · · , zT . Instead
of training separate VAEs zi → xi , train a joint model:

p(x≤T , z≤T ) =
T∏
t=1

p(xt | z≤t , x<t )p(zt | z<t , x<t )

zt

ht−1 ht

xt

(a) Prior

zt

ht−1 ht

xt

(b) Generation

zt

ht−1 ht

xt

(c) Recurrence

zt

ht−1 ht

xt

(d) Inference

Chung et al, 2016

• Use RNNs to model the conditionals (similar to PixelRNN)

• Use RNNs for inference q(z≤T |x≤T ) =
∏T

t=1 q(zt | z<t , x≤t)

• Train like VAE to maximize ELBO. Conceptually similar to

PixelVAE.
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Combining losses

Z

X

fθ

• Flow model, the marginal likelihood p(x) is given by

pX (x; θ) = pZ
(
f−1θ (x)

) ∣∣∣∣∣det
(
∂f−1θ (x)

∂x

)∣∣∣∣∣
• Can also be thought of as the generator of a GAN

• Should we train by minθ DKL(pdata, pθ) or minθ JSD(pdata, pθ)?
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FlowGAN

Although DKL(pdata, pθ) = 0 if and only if JSD(pdata, pθ) = 0,

optimizing one does not necessarily optimize the other. If z, x have

same dimensions, can optimize

minθ KL(pdata, pθ) + λJSD(pdata, pθ)

Interpolates between a GAN and a flow model

11 / 19



Adversarial Autoencoder (VAE + GAN)

φ z

x

θ

log p(x; θ) = L(x; θ, φ)︸ ︷︷ ︸
ELBO

+DKL(q(z | x;φ)‖p(z|x; θ))

Ex∼pdata [L(x; θ, φ)]︸ ︷︷ ︸
≈training obj.

= Ex∼pdata [log p(x; θ)− DKL(q(z | x;φ)‖p(z|x; θ))]

up to const.
≡ −DKL(pdata(x)‖p(x; θ))︸ ︷︷ ︸

equiv. to MLE

−Ex∼pdata [DKL(q(z | x;φ)‖p(z|x; θ))]

• Note: regularized maximum likelihood estimation (Shu et al,

Amortized inference regularization)

• Can add in a GAN objective −JSD(pdata, p(x; θ)) to get sharper

samples, i.e., discriminator attempting to distinguish VAE samples

from real ones. 12 / 19



An alternative interpretation

φ z

x

θ

Ex∼pdata
[L(x; θ, φ)]︸ ︷︷ ︸

≈training obj.

= Ex∼pdata
[log p(x; θ)− DKL(q(z | x;φ)‖p(z|x; θ))]

up to const.
≡ −DKL(pdata(x)‖p(x; θ))− Ex∼pdata

[DKL(q(z | x;φ)‖p(z|x; θ))]

= −
∑

x

pdata(x)

(
log

pdata(x)

p(x; θ)
+
∑

z

q(z | x;φ) log
q(z | x;φ)

p(z|x; θ)

)

= −
∑

x

pdata(x)

(∑
z

q(z | x;φ) log
q(z | x;φ)pdata(x)

p(z|x; θ)p(x; θ)

)

= −
∑
x,z

pdata(x)q(z | x;φ) log
pdata(x)q(z | x;φ)

p(x; θ)p(z|x; θ)

= −DKL(pdata(x)q(z | x;φ)︸ ︷︷ ︸
q(z,x;φ)

‖ p(x; θ)p(z|x; θ)︸ ︷︷ ︸
p(z,x;θ)

)
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An alternative interpretation

φ z

x

θ

Ex∼pdata [L(x; θ, φ)︸ ︷︷ ︸
ELBO

] ≡ −DKL(pdata(x)q(z | x;φ)︸ ︷︷ ︸
q(z,x;φ)

‖ p(x; θ)p(z|x; θ)︸ ︷︷ ︸
p(z,x;θ)

)

• Optimizing ELBO is same as KL matching the inference distribution

q(z, x;φ) to the generative distribution p(z, x; θ) = p(z)p(x|z; θ)

• Intuition: p(x; θ)p(z|x; θ) = pdata(x)q(z | x;φ) if

1. pdata(x) = p(x; θ)

2. q(z | x;φ) = p(z|x; θ) for all x

3. Hence we get the VAE objective:

−DKL(pdata(x)‖p(x; θ))− Ex∼pdata [DKL(q(z | x;φ)‖p(z|x; θ))]

• Many other variants are possible! VAE + GAN:

−JSD(pdata(x)‖p(x; θ))−DKL(pdata(x)‖p(x; θ))−Ex∼pdata [DKL(q(z | x;φ)‖p(z|x; θ))]
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Adversarial Autoencoder (VAE + GAN)

φ z

x

θ

Ex∼pdata [L(x; θ, φ)︸ ︷︷ ︸
ELBO

] ≡ −DKL(pdata(x)q(z | x;φ)︸ ︷︷ ︸
q(z,x;φ)

‖ p(x; θ)p(z|x; θ)︸ ︷︷ ︸
p(z,x;θ)

)

• Optimizing ELBO is the same as matching the inference distribution

q(z, x;φ) to the generative distribution p(z, x; θ)

• Alternative factorization: p(z)p(x|z; θ) = q(z;φ)q(x | z;φ) if

1. q(z;φ) = p(z)

2. q(x | z;φ) = p(x|z; θ) for all z

3. We get an equivalent form of the VAE objective:

−DKL(q(z;φ)‖p(z))− Ez∼q(z;φ) [DKL(q(x | z;φ)‖p(x|z; θ))]
• Other variants are possible. E.g., can add −JSD(q(z;φ)‖p(z)) to

match features in latent space (Zhao et al; Makhzani et al)
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Information Preference

φ z

x

θ

Ex∼pdata [L(x; θ, φ)︸ ︷︷ ︸
ELBO

] ≡ −DKL(pdata(x)q(z | x;φ)︸ ︷︷ ︸
q(z,x;φ)

‖ p(x; θ)p(z|x; θ)︸ ︷︷ ︸
p(z,x;θ)

)

• ELBO is optimized as long as q(z, x;φ) = p(z, x; θ). Many solutions

are possible! For example,

1. p(z, x; θ) = p(z)p(x|z; θ) = p(z)pdata(x)

2. q(z, x;φ) = pdata(x)q(z|x;φ) = pdata(x)p(z)

3. Note x and z are independent. z carries no information about

x. This happens in practice when p(x|z; θ) is too flexible, like

PixelCNN.

• Issue: System of equations with many more variables than

constraints 16 / 19



Information Maximizing

• Explicitly add a mutual information term to the objective

−DKL(pdata(x)q(z | x;φ)︸ ︷︷ ︸
q(z,x;φ)

‖ p(x; θ)p(z|x; θ)︸ ︷︷ ︸
p(z,x;θ)

) + αMI (x, z)

• MI intuitively measures how far x and z are from being independent

MI (x, z) = DKL (p(z, x; θ)‖p(z)p(x; θ))

• InfoGAN (Chen et al, 2016) used to learn meaningful

(disentangled?) representations of the data

MI (x, z)− Ex∼pθ [DKL(pθ(z|x)‖qφ(z|x))]− JSD(pdata(x)‖pθ(x))
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β-VAE

Model proposed to learn disentangled features / latent variables

(Higgins, 2016)

−Eqφ(x,z)[log pθ(x|z)] + βEx∼pdata [DKL(qφ(z|x)‖p(z))]

It is a VAE with scaled up KL divergence term (β > 1). This is

equivalent (up to constants) to the following objective:

(β − 1)MI (x; z) + βDKL(qφ(z)‖p(z))) + Eqφ(z)[DKL(qφ(x|z)‖pθ(x|z))]

See The Information Autoencoding Family: A Lagrangian

Perspective on Latent Variable Generative Models for more

examples.

18 / 19



Conclusion

• We have covered several useful building blocks: autoregressive,

latent variable models, flow models, GANs, EBMs

• Can be combined in many ways to achieve different tradeoffs

• Which one is best? Evaluation is tricky. Still largely empirical
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