Deep Generative Models
 Lecture 12: Energy-Based Models

Aditya Grover
UCLA

Recap

- Autoregressive models. $p_{\theta}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{i=1}^{n} p_{\theta}\left(x_{i} \mid x_{<i}\right)$
- Normalizing flow models. $p_{\theta}(\mathbf{x})=p(\mathbf{z})\left|\operatorname{det} J_{f_{\theta}}(\mathbf{x})\right|$, where

$$
\mathbf{z}=f_{\theta}(\mathbf{x})
$$

- Variational autoencoders: $p_{\theta}(\mathbf{x})=\int p(\mathbf{z}) p_{\theta}(\mathbf{x} \mid \mathbf{z}) \mathrm{d} \mathbf{z}$

Cons: Model architectures are restricted

Recap

- Generative Adversarial Networks (GANs)
- $\min _{\theta} \max _{\phi} E_{\mathbf{x} \sim p_{\text {data }}}\left[\log D_{\phi}(\mathbf{x})\right]+E_{\mathbf{z} \sim p(z)}\left[\log \left(1-D_{\phi}\left(G_{\theta}(\mathbf{z})\right)\right)\right]$.
- Two sample tests. Can optimize f-divergences and the Wasserstein distance
- Very flexible model architectures. But likelihood is intractable, training is unstable, hard to evaluate, and has mode collapse issues

Today's lecture

Energy-based models (EBMs).

- Very flexible model architectures
- Stable training
- Relatively high sample quality
- Flexible composition

Parameterizing probability distributions

Probability distributions $p(x)$ are a key building block in generative modeling.

1. non-negative: $p(x) \geq 0$
2. sum-to-one: $\sum_{x} p(x)=1$ (or $\int p(x) d x=1$ for continuous variables)

Coming up with a non-negative function $p_{\theta}(\mathbf{x})$ is not hard.
Given any function $f_{\theta}(\mathbf{x})$, we can choose

- $g_{\theta}(\mathbf{x})=f_{\theta}(\mathbf{x})^{2}$
- $g_{\theta}(\mathbf{x})=\exp \left(f_{\theta}(\mathbf{x})\right)$
- $g_{\theta}(\mathbf{x})=\left|f_{\theta}(\mathbf{x})\right|$
- $g_{\theta}(\mathbf{x})=\log \left(1+\exp \left(f_{\theta}(\mathbf{x})\right)\right)$

Parameterizing probability distributions

Probability distributions $p(\mathbf{x})$ satisfy two key properties

1. non-negative: $p(x) \geq 0$
2. sum-to-one: $\sum_{\mathbf{x}} p(\mathbf{x})=1$ (or $\int p(\mathbf{x}) d \mathbf{x}=1$ for continuous variables)

Sum-to-one is key:

Total "volume" is fixed: increasing $p\left(x_{\text {train }}\right)$ guarantees that $x_{\text {train }}$ becomes relatively more likely (compared to the rest)

Problem:

- $g_{\theta}(\mathbf{x}) \geq 0$ is easy, but $g_{\theta}(\mathbf{x})$ might not sum-to-one.
- $\sum_{\mathbf{x}} g_{\theta}(\mathbf{x})=Z(\theta) \neq 1$ in general, so $g_{\theta}(\mathbf{x})$ is not a valid probability mass function or density

Parameterizing probability distributions

Problem: $g_{\theta}(\mathbf{x}) \geq 0$ is easy, but $g_{\theta}(\mathbf{x})$ might not be normalized Solution:

$$
p_{\theta}(\mathrm{x})=\frac{1}{\operatorname{Volume}\left(g_{\theta}\right)} g_{\theta}(\mathrm{x})=\frac{1}{\int g_{\theta}(\mathrm{x}) \mathrm{dx}} g_{\theta}(\mathrm{x})
$$

Then by definition, $\int p_{\theta}(\mathbf{x}) \mathrm{d} \mathbf{x}=1$.
Example: choose $g_{\theta}(\mathbf{x})$ such that the volume is an analytical function of θ.

1. Gaussian. $g_{(\mu, \sigma)}(x)=e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$. Volume is:

$$
\int e^{-\frac{x-\mu}{2 \sigma^{2}}} d x=\sqrt{2 \pi \sigma^{2}}
$$

2. Exponential. $g_{\lambda}(x)=e^{-\lambda x}$. Volume is: $\int_{0}^{+\infty} e^{-\lambda x} d x=\frac{1}{\lambda}$
3. $g_{\theta}(x)=h(x) \exp \{\theta \cdot T(x)\}$. Volume is $\exp \{A(\theta)\}$, where $A(\theta)=\log \int h(x) \exp \{\theta \cdot T(x)\} \mathrm{d} \mathbf{x} . \rightarrow$ Exponential family.
E.g.: Normal, Poisson, Bernoulli, beta, gamma etc.

Despite being restrictive, the above functional forms are very useful as building blocks for more complex distributions

Likelihood based learning

Problem: $g_{\theta}(\mathbf{x}) \geq 0$ is easy, but $g_{\theta}(\mathbf{x})$ might not be normalized Solution:

$$
p_{\theta}(\mathbf{x})=\frac{1}{\operatorname{Volume}\left(g_{\theta}\right)} g_{\theta}(\mathbf{x})=\frac{1}{\int g_{\theta}(\mathbf{x}) d \mathbf{x}} g_{\theta}(\mathbf{x})
$$

Typically, choose $g_{\theta}(\mathbf{x})$ so that we know the volume analytically. More complex models can be obtained by combining these building blocks.

1. Autoregressive: Products of normalized objects $p_{\theta}(\mathbf{x}) p_{\theta^{\prime}(\mathbf{x})}(\mathbf{y})$:

$$
\int_{\mathbf{x}} \int_{\mathbf{y}} p_{\theta}(\mathbf{x}) p_{\theta^{\prime}(x)}(\mathbf{y}) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y}=\int_{\mathbf{x}} p_{\theta}(\mathbf{x}) \underbrace{\int_{\mathbf{y}} p_{\theta^{\prime}(\mathbf{x})}(\mathbf{y}) \mathrm{d} \mathbf{y}}_{=1} \mathrm{~d} \mathbf{x}=\int_{\mathbf{x}} p_{\theta}(\mathbf{x}) \mathrm{d} \mathbf{x}=1
$$

2. Latent variables: Mixtures of normalized objects

$$
\begin{aligned}
& \alpha p_{\theta}(\mathbf{x})+(1-\alpha) p_{\theta^{\prime}}(\mathbf{x}): \\
& \int_{\mathbf{x}} \alpha p_{\theta}(\mathbf{x})+(1-\alpha) p_{\theta^{\prime}}(\mathbf{x}) \mathrm{d} \mathbf{x}=\alpha+(1-\alpha)=1
\end{aligned}
$$

How about using models where the "volume" / normalization constant of $g_{\theta}(\mathbf{x})$ is not easy to compute analytically?

Energy-based model

$$
p_{\theta}(\mathbf{x})=\frac{1}{\int \exp \left(f_{\theta}(\mathbf{x})\right) d \mathbf{x}} \exp \left(f_{\theta}(\mathbf{x})\right)=\frac{1}{Z(\theta)} \exp \left(f_{\theta}(\mathbf{x})\right)
$$

The volume/normalization constant $Z(\theta)=\int \exp \left(f_{\theta}(\mathbf{x})\right) d \mathbf{x}$ is also called the partition function. Why exponential (and not e.g. $\left.f_{\theta}(\mathbf{x})^{2}\right)$?

1. Want to capture very large variations in probability. Hence, log-probs is a natural scale. Otherwise need highly non-smooth f_{θ}.
2. Exponential families. Many common distributions can be written in this form.
3. These distributions arise under fairly general assumptions in statistical physics (maximum entropy, second law of thermodynamics).

- $-f_{\theta}(\mathbf{x})$ is called the energy, hence the name.
- Intuitively, configurations \mathbf{x} with low energy (high $f_{\theta}(\mathbf{x})$) are more likely.

Energy-based model

$$
p_{\theta}(\mathbf{x})=\frac{1}{\int \exp \left(f_{\theta}(\mathbf{x})\right) \mathrm{d} \mathbf{x}} \exp \left(f_{\theta}(\mathbf{x})\right)=\frac{1}{Z(\theta)} \exp \left(f_{\theta}(\mathbf{x})\right)
$$

Pros:

1. extreme flexibility: can use pretty much any function $f_{\theta}(\mathbf{x})$ you want

Cons:

1. Sampling from $p_{\theta}(\mathbf{x})$ is hard
2. Evaluating and optimizing likelihood $p_{\theta}(\mathbf{x})$ is hard (learning is hard)
3. No feature learning (but can add latent variables)

Curse of dimensionality: The fundamental issue is that computing $Z(\theta)$ numerically (when no analytic solution is available) scales exponentially in the number of dimensions of $\mathbf{x} \cdot 10 /$

Applications of Energy-based models

$$
p_{\theta}(\mathbf{x})=\frac{1}{\int \exp \left(f_{\theta}(\mathbf{x})\right) d \mathbf{x}} \exp \left(f_{\theta}(\mathbf{x})\right)=\frac{1}{Z(\theta)} \exp \left(f_{\theta}(\mathbf{x})\right)
$$

- Given $\mathbf{x}, \mathbf{x}^{\prime}$ evaluating $p_{\theta}(\mathbf{x})$ or $p_{\theta}\left(\mathbf{x}^{\prime}\right)$ requires $Z(\theta)$.
- However, their ratio

$$
\frac{p_{\theta}(\mathbf{x})}{p_{\theta}\left(\mathbf{x}^{\prime}\right)}=\exp \left(f_{\theta}(\mathbf{x})-f_{\theta}\left(\mathbf{x}^{\prime}\right)\right)
$$

does not involve $Z(\theta)$.

- This means we can easily check which one is more likely.

Applications:

1. anomaly detection
2. denoising

Applications of Energy-based models

object recognition

sequence labeling

image restoration

Given a trained model, many applications require relative comparisons. Hence $Z(\theta)$ is not needed.

Example: Ising Model

- There is a true image $\mathbf{y} \in\{0,1\}^{3 \times 3}$, and a corrupted image $\mathbf{x} \in\{0,1\}^{3 \times 3}$. We know \mathbf{x}, and want to somehow recover \mathbf{y}.

- We model the joint probability distribution $p(\mathbf{y}, \mathbf{x})$ as

$$
p(\mathbf{y}, \mathbf{x})=\frac{1}{Z} \exp \left(\sum_{i} \psi_{i}\left(x_{i}, y_{i}\right)+\sum_{(i, j) \in E} \psi_{i j}\left(y_{i}, y_{j}\right)\right)
$$

- $\psi_{i}\left(x_{i}, y_{i}\right)$: the i-th corrupted pixel depends on the i-th original pixel
- $\psi_{i j}\left(y_{i}, y_{j}\right)$: neighboring pixels tend to have the same value
- How did the original image y look like? Solution: maximize $p(\mathbf{y} \mid \mathbf{x})$. Or equivalently, maximize $p(\mathbf{y}, \mathbf{x})$.

Example: Product of Experts

- Suppose you have trained several models $q_{\theta_{1}}(\mathbf{x}), r_{\theta_{2}}(\mathbf{x}), t_{\theta_{3}}(\mathbf{x})$. They can be different models (PixelCNN, Flow, etc.)
- Each one is like an expert that can be used to score how likely an input \mathbf{x} is.
- Assuming the experts make their judgments indpendently, it is tempting to ensemble them as

$$
p_{\theta_{1}}(\mathbf{x}) q_{\theta_{2}}(\mathbf{x}) r_{\theta_{3}}(\mathbf{x})
$$

- To get a valid probability distribution, we need to normalize

$$
p_{\theta_{1}, \theta_{2}, \theta_{3}}(\mathbf{x})=\frac{1}{Z\left(\theta_{1}, \theta_{2}, \theta_{3}\right)} q_{\theta_{1}}(\mathbf{x}) r_{\theta_{2}}(\mathbf{x}) t_{\theta_{3}}(\mathbf{x})
$$

- Note: similar to an AND operation (e.g., probability is zero as long as one model gives zero probability), unlike mixture models which behave more like OR

Example: Product of Experts

Image source: Du et al., 2020.

Example: Restricted Boltzmann machine (RBM)

- RBM: energy-based model with latent variables
- Two types of variables:

1. $\mathbf{x} \in\{0,1\}^{n}$ are visible variables (e.g., pixel values)
2. $\mathbf{z} \in\{0,1\}^{m}$ are latent ones

- The joint distribution is

$$
p_{W, b, c}(\mathbf{x}, \mathbf{z})=\frac{1}{Z} \exp \left(\mathbf{x}^{\top} W \mathbf{z}+b \mathbf{x}+c \mathbf{z}\right)=\frac{1}{Z} \exp \left(\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} z_{j} w_{i j}+b \mathbf{x}+c \mathbf{z}\right)
$$

- Restricted because there are no visible-visible and hidden-hidden connections, i.e., $x_{i} x_{j}$ or $z_{i} z_{j}$ terms in the objective

Example: Deep Boltzmann Machines

Stacked RBMs are one of the first deep generative models:

Deep Boltzmann machine

- Bottom layer variables v are pixel values. Layers above (h) represent "higher-level" features (corners, edges, etc).
- Early deep neural networks for supervised learning had to be pre-trained like this to make them work.

Deep Boltzmann Machines: samples

Image source: Salakhutdinov and Hinton, 2009.

Energy-based models: learning and inference

$$
p_{\theta}(\mathbf{x})=\frac{1}{\int \exp \left(f_{\theta}(\mathbf{x})\right)} \exp \left(f_{\theta}(\mathbf{x})\right)=\frac{1}{Z(\theta)} \exp \left(f_{\theta}(\mathbf{x})\right)
$$

Pros:

1. can plug in pretty much any function $f_{\theta}(\mathbf{x})$ you want

Cons (lots of them):

1. Sampling is hard
2. Evaluating likelihood (learning) is hard
3. No feature learning

Curse of dimensionality: The fundamental issue is that computing $Z(\theta)$ numerically (when no analytic solution is available) scales exponentially in the number of dimensions of \mathbf{x}.

Computing the normalization constant is hard

- As an example, the RBM joint distribution is

$$
p_{W, b, c}(\mathbf{x}, \mathbf{z})=\frac{1}{Z} \exp \left(\mathbf{x}^{T} W \mathbf{z}+b \mathbf{x}+c \mathbf{z}\right)
$$

1. $x \in\{0,1\}^{n}$ are visible variables (e.g., pixel values)
2. $\mathbf{z} \in\{0,1\}^{m}$ are latent ones

- The normalization constant (the "volume") is

$$
Z(W, b, c)=\sum_{\mathbf{x} \in\{0,1\}^{n}} \sum_{\mathbf{z} \in\{0,1\}^{m}} \exp \left(\mathbf{x}^{\top} W \mathbf{z}+b \mathbf{x}+c \mathbf{z}\right)
$$

- Note: it is a well defined function of the parameters W, b, c, but no simple closed-form. Takes time exponential in n, m to compute. This means that evaluating the objective function $p_{W, b, c}(\mathbf{x}, \mathbf{z})$ for likelihood based learning is hard.
- Observation: Optimizing the likelihood $p_{W, b, c}(\mathbf{x}, \mathbf{z})$ is difficult, but optimizing the un-normalized probability $\exp \left(\mathbf{x}^{\top} W \mathbf{z}+b \mathbf{x}+c \mathbf{z}\right)$ (w.r.t. trainable parameters W, b, c) is easy.

Training intuition

- Goal: maximize $\frac{\exp \left\{f_{\theta}\left(x_{\text {train }}\right)\right\}}{Z(\theta)}$. Increase numerator, decrease denominator.
- Intuition: because the model is not normalized, increasing the un-normalized log-probability $f_{\theta}\left(\mathbf{x}_{\text {train }}\right)$ by changing θ does not guarantee that $\mathbf{x}_{\text {train }}$ becomes relatively more likely (compared to the rest).
- We also need to take into account the effect on other "wrong points" and try to "push them down" to also make $Z(\theta)$ small.

Contrastive Divergence

- Goal: maximize $\frac{\exp \left\{f_{\theta}\left(x_{\text {train }}\right)\right\}}{Z(\theta)}$
- Idea: Instead of evaluating $Z(\theta)$ exactly, use a Monte Carlo estimate.
- Contrastive divergence algorithm: sample $x_{\text {sample }} \sim p_{\theta}$, take step on $\nabla_{\theta}\left(f_{\theta}\left(x_{\text {train }}\right)-f_{\theta}\left(x_{\text {sample }}\right)\right)$. Make training data more likely than typical sample from the model.

Contrastive Divergence

- Maximize log-likelihood: $\max _{\theta} f_{\theta}\left(x_{\text {train }}\right)-\log Z(\theta)$.
- Gradient of log-likelihood:

$$
\begin{array}{cc}
& \nabla_{\theta} f_{\theta}\left(x_{\text {train }}\right)-\nabla_{\theta} \log Z(\theta) \\
= & \nabla_{\theta} f_{\theta}\left(x_{\text {train }}\right)-\frac{\nabla_{\theta} Z(\theta)}{Z(\theta)} \\
= & \nabla_{\theta} f_{\theta}\left(x_{\text {train }}\right)-\frac{1}{Z(\theta)} \int \nabla_{\theta} \exp \left\{f_{\theta}(x)\right\} \mathrm{d} x \\
= & \nabla_{\theta} f_{\theta}\left(x_{\text {train }}\right)-\frac{1}{Z(\theta)} \int \exp \left\{f_{\theta}(x)\right\} \nabla_{\theta} f_{\theta}(x) \mathrm{d} x \\
= & \nabla_{\theta} f_{\theta}\left(x_{\text {train }}\right)-\int \frac{\exp \left\{f_{\theta}(x)\right\}}{Z(\theta)} \nabla_{\theta} f_{\theta}(x) \mathrm{d} x \\
= & \nabla_{\theta} f_{\theta}\left(x_{\text {train }}\right)-E_{x_{\text {sample }}}\left[\nabla_{\theta} f_{\theta}\left(x_{\text {sample }}\right)\right] \\
\approx & \nabla_{\theta} f_{\theta}\left(x_{\text {train }}\right)-\nabla_{\theta} f_{\theta}\left(x_{\text {sample }}\right),
\end{array}
$$

where $x_{\text {sample }} \sim \exp \left\{f_{\theta}\left(x_{\text {sample }}\right)\right\} / Z(\theta)$.

- How to sample?

Sampling from energy-based models

$$
p_{\theta}(\mathbf{x})=\frac{1}{\int \exp \left(f_{\theta}(\mathbf{x})\right)} \exp \left(f_{\theta}(\mathbf{x})\right)=\frac{1}{Z(\theta)} \exp \left(f_{\theta}(\mathbf{x})\right)
$$

- No direct way to sample like in autoregressive or flow models. Main issue: cannot easily compute how likely each possible sample is
- However, we can easily compare two samples $\mathbf{x}, \mathbf{x}^{\prime}$.
- Use an iterative approach called Markov Chain Monte Carlo:

1. Initialize x^{0} randomly, $t=0$
2. Let $x^{\prime}=x^{t}+$ noise
2.1 If $f_{\theta}\left(x^{\prime}\right)>f_{\theta}\left(x^{t}\right)$, let $x^{t+1}=x^{\prime}$
2.2 Else let $x^{t+1}=x^{\prime}$ with probability $\exp \left(f_{\theta}\left(x^{\prime}\right)-f_{\theta}\left(x^{t}\right)\right)$
3. Go to step ??

- Works in theory, but can take a very long time to converge

Sampling from energy-based models

- For any continuous distribution $p_{\theta}(\mathbf{x})$, suppose we can compute its gradient (the score function) $\nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x})$.
- Let $\pi(\mathbf{x})$ be a prior distribution that is easy to sample from.
- Langevin MCMC.
- $\mathbf{x}^{0} \sim \pi(\mathrm{x})$
- Repeat $\mathbf{x}^{t+1} \sim \mathbf{x}^{t}+\epsilon \nabla_{\mathbf{x}} \log p_{\theta}\left(\mathbf{x}^{t}\right)+\sqrt{2 \epsilon} \mathbf{z}^{t}$ for $t=0,1,2, \cdots, T-1$, where $\mathbf{z}^{t} \sim \mathcal{N}(0, I)$.
- If $\epsilon \rightarrow 0$ and $T \rightarrow \infty$, we have $\mathbf{x}^{T} \sim p_{\theta}(\mathbf{x})$.
- Note that for energy-based models

$$
\begin{aligned}
\nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x}) & =\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})-\underbrace{\nabla_{\mathbf{x}} \log Z(\theta)}_{=0} \\
& =\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})
\end{aligned}
$$

Modern energy-based models

Langevin sampling

Face samples
Image source: Nijkamp et al. 2019

Modern energy-based models

ImageNet samples
Image source: Du et al., 2019

