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Recap of last lecture
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e Energy-based models: py(x) = %.

e Z(0) is intractable, so no access to likelihood.
e Comparing the probability of two points is easy:

po(x)/po(x) = exp(fy(x') — fy(x)).
e Maximum likelihood training: maxg{fy(Xtrain) — log Z(0)}.
e Contrastive divergence:

vGf-e(xtrain) - v@ |0g 2(9) ~ v‘9f9()(1.*rain) - v‘9f9()(samp/e)a

where Xsample ~ po(X).



Sampling from EBMs: MH-MCMC

Metropolis-Hastings Markov chain Monte Carlo (MCMC).

1. x0 ~ 7(x)
2. Repeat for t =0,1,2,---, T — 1:
e x' = x'+ noise
o xiTl = x"if fo(x') > fy(x?)
o If fy(x') < fy(x?), set x'*1 = x’ with probability
exp{fy(x’) — fo(x')}, otherwise set x'*! = xt.

Properties:

e In theory, x” converges to pg(x) when T — oo.

e In practice, need a large number of iterations and convergence

slows down exponentially in dimensionality.



Sampling from EBMs: unadjusted Langevin MCMC

Unadjusted Langevin MCMC:
1. x° ~ 7(x)
2. Repeat for t =0,1,2,--- , T — 1:
e z' ~ N(0,/)
o x'tl = xt 4 €V, log pg(X)|xext + V2¢z?

Properties:

e x' converges to py(x) when T — oo and € — 0.
e Vylog py(x) = Vxfy(x) for continuous energy-based models.
e Convergence slows down as dimensionality grows.

Sampling converges slowly in high dimensional spaces and is thus
very expensive, yet we need sampling for each training iteration

in contrastive divergence.



Today’s lecture

Goal: Training without sampling

e Score Matching
e Noise Contrastive Estimation

e Adversarial training



Score function

Energy-based model: py(x) = %

(Stein) Score function:

sp(x) := Vxlog pg(x) = Vxfy(x) — Vxlog Z(8) = Vxfp(x)
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po(x) vs. sp(x)



Score matching

Observation

sp(x) = Vx log pg(x) is independent of the partition function Z(0).

Fisher divergence between p(x) and g(x):

1
De(p, q) = 5 Ex~pl| Vx log p(x) — Vix log q(x)]13]

Score matching: minimizing the Fisher divergence between
Pdata(X) and the EBM py(x)
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Score matching

1

5 Expau [ Vx 108 Paata (X) — Vi log pp(x) 3]

How to deal with Vy log p4ata(X)? Integration by parts!

1
EEXNPdm [(Vx log paata(x) — Vx log pg(x))?]  (Univariate case)

— % /pdata(X)[(vx log pdata(X) — Vx log p(?(X))Z]dX

= %/pdata(x)(vx Iogpdata(x))2dx+ % / Pdata(x)(V« log [J,'/(X))ZLlX

- / Pdata(X)vx |°g Pdata(x)vx IOg pg(X)dX
For the cross-correlation term:

*/pdata(x)vx 10g Pdata(x) Vx log po(x)dx = 7/pdata(x) VxPdata (X) Vx log pp (x)dx

pdata(x)
= —Paara(x) Vx log Py ()2 _ oo + / Paata(x) V2 log pp (x)dx
=()

= [ puana(x)V2 og po ()dx




Score matching

Univariate score matching
1
5 Bepana [(Vx 108 et (x) — Vx log py (x))’]

1 1/ >
= 5 [ PosaX)(VixIoB pasal()x + 5 [ s (0)(Vx I pa())Pebx

f/ Pdata (X) Vx 10g Pdata(x) Vx log pg (x)dx

= 5 [ PenalN( 108 Pesa()dx + 5 [ pasal)(Vclog o) e

const.

2l /pdata(x)vz |ng(,(><)([><

= Expyya [ = (Vx log pa(x))? 4+ V2 log pg(x)] + const.

1
2

Multivariate score matching

1

5 Bxevps [ Vx 108 Paata(x) — Vx log py (x)|[3]

1
=N |:§”VX log po(x)||5 + tr( V2 log pg(x) )} + const.

Hessian of log pg(x) 9/21



Score matching

1. Sample a mini-batch of datapoints {x1,X2, - ,Xp} ~ Pdata(X)
2. Estimate the score matching loss with the empirical mean

- Z (519108 o (<31 + tr(V3 1og py (x:)]

== Z [5 194 f ()18 + (V30 (x)]

3. Stochastic gradient descent
4. No need to sample from the EBM!

Caveat: Computing the trace of Hessian tr(V2 log py(x)) is in
general very expensive for large models. Some solutions: Denoising
score matching (Vincent 2010) and sliced score matching (Song et
al. 2019).
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Distances used for training energy-based models.

e KL divergence = maximum likelihood.
Vofg(Xdata) — fo(Xsample) ~(contrastive divergence)

e Fisher divergence = score matching.

1

EEXdiata[HvX log Pdata(X) — foo(X)H%]
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Noise contrastive estimation

Learning an energy-based model by contrasting it with a noise
distribution.

e Data distribution: pgata(X).
e Noise distribution: pp(x). Should be analytically tractable and

easy to sample from.
e Training a discriminator Dy(x) € [0, 1] to distinguish between

data samples and noise samples.

max Ex~pyna[l0g Do(x)] + Ex~p,[log(1 — Dp(x))]

e Optimal discriminator Dy~ (x).

o Pdata (X)
Do-(x) = Pdata(X) + pn(X)




Noise contrastive estimation

What if the discriminator is parameterized by

Po(x)

Do(x) = po(x) + pn(x)

The optimal discriminator Dy-(x) satisfies

B Po+ (x) - Pdata (X)
Dg-(x) = po(X) + pa(X)  Ppdata(X) + pn(x)

Equivalently,

 pn(x) Do+ (x)

po+(x) = 1— Dy (x) = Pdata(X)

13 /21



Noise contrastive estimation for training EBMs

Energy-based model:
efg(X)

Z(0)
The constraint Z(0) = [ e®*)dx is hard to satisfy.

Pe(x) =

Solution: Modeling Z(6) with an additional trainable parameter Z
that disregards the constraint Z = [ eff(®)dx.

efe(x)
po,z(x) = 7

The optimal parameters 0%, Z* in noise contrastive estimation are
efe*(x)
Z*
The optimal parameter Z* is the correct partition function, because

efG*(x) £
/ Z dx:/pdata(x)dx:l = 7" :/ee*(x)dx

Po* . z* (X) = = pdata(x)
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Noise contrastive estimation for training EBMs

The discriminator Dy z(x) for probabilistic model pg 7(x) is
efo ™) fa (x)
e
D = Z =
G’Z(X) ef9Z(") + pn(x) efo(x) 1+ pn(x)Z

Noise contrastive estimation training

1% Ex-pau 108 Do 2(x)] + Expy 108 (1 — Dy 2(x)]

Equivalently,

X Expay [fo(3) — 108(e7%) + Zpy(x))]

+ Exp[108(Zpn(x)) — log(e®™) + Zp,(x))]
Log-sum-exp trick for numerical stability:
|og(ef9(x) + an(x)) _ Iog(efg(x) + elogZ-Hogpn(x))

= logsumexp(fy(x), log Z + log pn(x)) .



Noise contrastive estimation for training EBMs

1. Sample a mini-batch of datapoints x1,X2, -+, Xp ~ Pdata(X)-
2. Sample a mini-batch of noise samples y1,y2, - ,¥n ~ pa(y)-

3. Estimate the NCE loss

1 n
- > [fa(xi) — logsumexp(fy(x;), log Z + log pn(x;))
i=1

+ log Z + pn(yi) — logsumexp(fy(yi), log Z + log pn(yi))]

4. Stochastic gradient ascent

5. No need to sample from the EBM!
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Comparing NCE and GAN

Similarities:
e Both involve training a discriminator to perform binary

classification with a cross-entropy loss
e Both are likelihood-free

Differences:

e Unlike NCE, GAN requires adversarial training or minimax
optimization for training

e NCE requires the likelihood of the noise distribution for
training, while GAN only requires efficient sampling from the
prior

e NCE trains an energy-based model, while GAN trains a

deterministic sample generator
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Flow contrastive estimation (Gao et al. 20

Observations:

e We need to both evaluate the probability of p,(x), and sample
from it efficiently

e We hope to make the classification task as hard as possible,
i.e., pn(x) should be close to pgata(x) (but not exactly the
same)

Flow contrastive estimation:

e Parameterize the noise as a normalizing flow p, 4(x)
e Parameterize the discriminator Dy 7 4(x) as
efo (x)

Do,z,6(x) = 7= = i

efo(®)

e Train the flow model to minimize D s(Pdata; Pn¢):

Min Max Ecvpyua [108 Do,2,6(X)] + Exve, o [108(1 = Do, 2,6(x))] -



Flow contrastive estimation (Gao et al. 2020)
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Samples from SVHN, CIFAR-10, and CelebA datasets

Image source: Gao et al. 2020
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Adversarial training for EBMs

Energy-based model:

efg(x)
P~ 7w
Upper bound the log-likelihood with a variational distribution

qe(x):
Expasia [108 Po (X)] = Expgara [fo(X)] — log Z(0)

~ By ()] ~ log [ €"¥ax

efo(x)

= Exmpgaea[fa (X)] — Iog/%v(x) 70 (x dx

fo(x)
< B 0] = [ 06 w%()
H(

= Expaags [0 (X)] = Exay [fo (x)] + H(gg (x))

Adversarial training
maX i B ()] — Exg [60)] + H(06()

i ?
What do we require for the model g, (x)? oo



Conclusion

e Energy-based models are very flexible probabilistic models
with intractable partition functions

e Computing the likelihood is hard

e Comparing the likelihood/probability of two different points is
tractable

e Sampling is hard and typically requires iterative MCMC
approaches

e Maximum likelihood training by contrastive divergence.
Requires sampling for each training iteration

e Sampling-free training methods: score matching, noise
contrastive estimation (with partition function estimation),
adversarial optimization.

e Reference: How to Train Your Energy-Based Models by Yang

Song and Durk Kingma
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