
Deep Generative Models

Lecture 13: Energy-Based Models

Aditya Grover

UCLA

1 / 21

Recap of last lecture

• Energy-based models: pθ(x) = exp{fθ(x)}
Z(θ) .

• Z (θ) is intractable, so no access to likelihood.

• Comparing the probability of two points is easy:

pθ(x′)/pθ(x) = exp(fθ(x′)− fθ(x)).

• Maximum likelihood training: maxθ{fθ(xtrain)− logZ (θ)}.
• Contrastive divergence:

∇θfθ(xtrain)−∇θ logZ (θ) ≈ ∇θfθ(xtrain)−∇θfθ(xsample),

where xsample ∼ pθ(x).

2 / 21

Sampling from EBMs: MH-MCMC

Metropolis-Hastings Markov chain Monte Carlo (MCMC).

1. x0 ∼ π(x)

2. Repeat for t = 0, 1, 2, · · · ,T − 1:

• x′ = xt + noise

• xt+1 = x′ if fθ(x′) ≥ fθ(xt)

• If fθ(x′) < fθ(xt), set xt+1 = x′ with probability

exp{fθ(x′)− fθ(xt)}, otherwise set xt+1 = xt .

Properties:

• In theory, xT converges to pθ(x) when T →∞.

• In practice, need a large number of iterations and convergence

slows down exponentially in dimensionality.

3 / 21

Sampling from EBMs: unadjusted Langevin MCMC

Unadjusted Langevin MCMC:

1. x0 ∼ π(x)
2. Repeat for t = 0, 1, 2, · · · ,T − 1:

• zt ∼ N (0, I)

• xt+1 = xt + ε∇x log pθ(x)|x=xt +
√

2εzt

Properties:

• xT converges to pθ(x) when T →∞ and ε→ 0.

• ∇x log pθ(x) = ∇xfθ(x) for continuous energy-based models.

• Convergence slows down as dimensionality grows.

Sampling converges slowly in high dimensional spaces and is thus

very expensive, yet we need sampling for each training iteration

in contrastive divergence.

4 / 21

Today’s lecture

Goal: Training without sampling

• Score Matching

• Noise Contrastive Estimation

• Adversarial training

5 / 21

Score function

Energy-based model: pθ(x) = exp{fθ(x)}
Z(θ)

(Stein) Score function:

sθ(x) := ∇x log pθ(x) = ∇xfθ(x)−∇x logZ (θ)︸ ︷︷ ︸
=0

= ∇xfθ(x)

• Gaussian distribution

pθ(x) = 1√
2πσ

e−
(x−µ)2

2σ2

−→ sθ(x) = − x−µ
σ2

• Gamma distribution

pθ(x) = βα

Γ(α)x
α−1e−βx

−→ sθ(x) = α−1
x − β

pθ(x) vs. sθ(x)

6 / 21

Score matching

Observation

sθ(x) = ∇x log pθ(x) is independent of the partition function Z (θ).

Fisher divergence between p(x) and q(x):

DF (p, q) :=
1

2
Ex∼p[‖∇x log p(x)−∇x log q(x)‖2

2]

Score matching: minimizing the Fisher divergence between

pdata(x) and the EBM pθ(x)

1

2
Ex∼pdata

[‖∇x log pdata(x)− sθ(x)‖2
2]

=
1

2
Ex∼pdata

[‖∇x log pdata(x)−∇xfθ(x)‖2
2]

7 / 21

Score matching

1

2
Ex∼pdata

[‖∇x log pdata(x)−∇x log pθ(x)‖2
2]

How to deal with ∇x log pdata(x)? Integration by parts!
1

2
Ex∼pdata [(∇x log pdata(x)−∇x log pθ(x))2] (Univariate case)

=
1

2

∫
pdata(x)[(∇x log pdata(x)−∇x log pθ(x))2]dx

=
1

2

∫
pdata(x)(∇x log pdata(x))2dx +

1

2

∫
pdata(x)(∇x log pθ(x))2dx

−
∫

pdata(x)∇x log pdata(x)∇x log pθ(x)dx

For the cross-correlation term:

−
∫

pdata(x)∇x log pdata(x)∇x log pθ(x)dx = −
∫

pdata(x)
1

pdata(x)
∇xpdata(x)∇x log pθ(x)dx

= −pdata(x)∇x log pθ(x)|∞x=−∞︸ ︷︷ ︸
=0

+

∫
pdata(x)∇2

x log pθ(x)dx

=

∫
pdata(x)∇2

x log pθ(x)dx

8 / 21

Score matching

Univariate score matching
1

2
Ex∼pdata [(∇x log pdata(x)−∇x log pθ(x))2]

=
1

2

∫
pdata(x)(∇x log pdata(x))2dx +

1

2

∫
pdata(x)(∇x log pθ(x))2dx

−
∫

pdata(x)∇x log pdata(x)∇x log pθ(x)dx

=
1

2

∫
pdata(x)(∇x log pdata(x))2dx︸ ︷︷ ︸

const.

+
1

2

∫
pdata(x)(∇x log pθ(x))2dx

+

∫
pdata(x)∇2

x log pθ(x)dx

= Ex∼pdata [
1

2
(∇x log pθ(x))2 +∇2

x log pθ(x)] + const.

Multivariate score matching

1

2
Ex∼pdata

[‖∇x log pdata(x)−∇x log pθ(x)‖2
2]

=Ex∼pdata

[1

2
‖∇x log pθ(x)‖2

2 + tr(∇2
x log pθ(x)︸ ︷︷ ︸

Hessian of log pθ(x)

)
]

+ const.

9 / 21

Score matching

1. Sample a mini-batch of datapoints {x1, x2, · · · , xn} ∼ pdata(x)
2. Estimate the score matching loss with the empirical mean

1

n

n∑
i=1

[1

2
‖∇x log pθ(xi)‖2

2 + tr(∇2
x log pθ(xi))

]

=
1

n

n∑
i=1

[1

2
‖∇xfθ(xi)‖2

2 + tr(∇2
xfθ(xi))

]

3. Stochastic gradient descent

4. No need to sample from the EBM!

Caveat: Computing the trace of Hessian tr(∇2
x log pθ(x)) is in

general very expensive for large models. Some solutions: Denoising

score matching (Vincent 2010) and sliced score matching (Song et

al. 2019).

10 / 21

Recap

Distances used for training energy-based models.

• KL divergence = maximum likelihood.

∇θfθ(xdata)− fθ(xsample) (contrastive divergence)

• Fisher divergence = score matching.

1

2
Ex∼pdata

[‖∇x log pdata(x)−∇xfθ(x)‖2
2]

11 / 21

Noise contrastive estimation

Learning an energy-based model by contrasting it with a noise

distribution.

• Data distribution: pdata(x).

• Noise distribution: pn(x). Should be analytically tractable and

easy to sample from.

• Training a discriminator Dθ(x) ∈ [0, 1] to distinguish between

data samples and noise samples.

max
θ

Ex∼pdata
[logDθ(x)] + Ex∼pn [log(1− Dθ(x))]

• Optimal discriminator Dθ∗(x).

Dθ∗(x) =
pdata(x)

pdata(x) + pn(x)

12 / 21

Noise contrastive estimation

What if the discriminator is parameterized by

Dθ(x) =
pθ(x)

pθ(x) + pn(x)

The optimal discriminator Dθ∗(x) satisfies

Dθ∗(x) =
pθ∗(x)

pθ∗(x) + pn(x)
=

pdata(x)

pdata(x) + pn(x)

Equivalently,

pθ∗(x) =
pn(x)Dθ∗(x)

1− Dθ∗(x)
= pdata(x)

13 / 21

Noise contrastive estimation for training EBMs

Energy-based model:

pθ(x) =
efθ(x)

Z (θ)

The constraint Z (θ) =
∫
efθ(x)dx is hard to satisfy.

Solution: Modeling Z (θ) with an additional trainable parameter Z

that disregards the constraint Z =
∫
efθ(x)dx.

pθ,Z (x) =
efθ(x)

Z
The optimal parameters θ∗,Z ∗ in noise contrastive estimation are

pθ∗,Z∗(x) =
efθ∗ (x)

Z ∗
= pdata(x)

The optimal parameter Z ∗ is the correct partition function, because∫
efθ∗ (x)

Z ∗
dx =

∫
pdata(x)dx = 1 =⇒ Z ∗ =

∫
efθ∗ (x)dx

14 / 21

Noise contrastive estimation for training EBMs

The discriminator Dθ,Z (x) for probabilistic model pθ,Z (x) is

Dθ,Z (x) =
efθ(x)

Z

efθ(x)

Z + pn(x)
=

efθ(x)

efθ(x) + pn(x)Z

Noise contrastive estimation training

max
θ,Z

Ex∼pdata
[logDθ,Z (x)] + Ex∼pn [log(1− Dθ,Z (x))]

Equivalently,

max
θ,Z

Ex∼pdata
[fθ(x)− log(efθ(x) + Zpn(x))]

+ Ex∼pn [log(Zpn(x))− log(efθ(x) + Zpn(x))]

Log-sum-exp trick for numerical stability:

log(efθ(x) + Zpn(x)) = log(efθ(x) + e log Z+log pn(x))

= logsumexp(fθ(x), logZ + log pn(x))
15 / 21

Noise contrastive estimation for training EBMs

1. Sample a mini-batch of datapoints x1, x2, · · · , xn ∼ pdata(x).

2. Sample a mini-batch of noise samples y1, y2, · · · , yn ∼ pn(y).

3. Estimate the NCE loss

1

n

n∑
i=1

[fθ(xi)− logsumexp(fθ(xi), logZ + log pn(xi))

+ logZ + pn(yi)− logsumexp(fθ(yi), logZ + log pn(yi))]

4. Stochastic gradient ascent

5. No need to sample from the EBM!

16 / 21

Comparing NCE and GAN

Similarities:

• Both involve training a discriminator to perform binary

classification with a cross-entropy loss

• Both are likelihood-free

Differences:

• Unlike NCE, GAN requires adversarial training or minimax

optimization for training

• NCE requires the likelihood of the noise distribution for

training, while GAN only requires efficient sampling from the

prior

• NCE trains an energy-based model, while GAN trains a

deterministic sample generator

17 / 21

Flow contrastive estimation (Gao et al. 2020)

Observations:

• We need to both evaluate the probability of pn(x), and sample

from it efficiently

• We hope to make the classification task as hard as possible,

i.e., pn(x) should be close to pdata(x) (but not exactly the

same)

Flow contrastive estimation:

• Parameterize the noise as a normalizing flow pn,φ(x)
• Parameterize the discriminator Dθ,Z ,φ(x) as

Dθ,Z ,φ(x) =
efθ (x)

Z

efθ (x)

Z
+ pn,φ(x)

=
e fθ(x)

e fθ(x) + pn,φ(x)Z

• Train the flow model to minimize DJS(pdata, pn,φ):

min
φ

max
θ,Z

Ex∼pdata [logDθ,Z ,φ(x)] + Ex∼pn,φ [log(1− Dθ,Z ,φ(x))]
18 / 21

Flow contrastive estimation (Gao et al. 2020)

Samples from SVHN, CIFAR-10, and CelebA datasets

Image source: Gao et al. 2020

19 / 21

Adversarial training for EBMs

Energy-based model:

pθ(x) =
efθ(x)

Z (θ)

Upper bound the log-likelihood with a variational distribution
qφ(x):

Ex∼pdata [log pθ(x)] = Ex∼pdata [fθ(x)]− log Z(θ)

= Ex∼pdata [fθ(x)]− log

∫
efθ(x)dx

= Ex∼pdata [fθ(x)]− log

∫
qφ(x)

efθ(x)

qφ(x)
dx

≤ Ex∼pdata [fθ(x)]−
∫

qφ(x) log
efθ(x)

qφ(x)
dx

= Ex∼pdata [fθ(x)]− Ex∼qφ [fθ(x)] + H(qφ(x))

Adversarial training
max
θ

min
φ

Ex∼pdata
[fθ(x)]− Ex∼qφ [fθ(x)] + H(qφ(x))

What do we require for the model qφ(x)?
20 / 21

Conclusion

• Energy-based models are very flexible probabilistic models

with intractable partition functions

• Computing the likelihood is hard

• Comparing the likelihood/probability of two different points is

tractable

• Sampling is hard and typically requires iterative MCMC

approaches

• Maximum likelihood training by contrastive divergence.

Requires sampling for each training iteration

• Sampling-free training methods: score matching, noise

contrastive estimation (with partition function estimation),

adversarial optimization.

• Reference: How to Train Your Energy-Based Models by Yang

Song and Durk Kingma

21 / 21

