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Mid-quarter summary

Model family:

• Probability density/mass functions

• Autoregressive models. pθ(x) =
∏d

i=1 pθ(xi | x<i ).

• Normalizing flow models. pθ(x) = p(z)| det(Jfθ (x))|, where

z = fθ(x).

• Latent variable models (e.g., variational autoencoders).

pθ(x) =
∫
pθ(x | z)p(z)dz.

• Sample generation processes

• Generative adversarial networks (GANs). z ∼ p(z), x = gθ(z).
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Mid-quarter summary

Distances of probability distributions:

• KL divergence (maximum likelihood)

• Autoregressive models.

• Normalizing flow models.

• ELBO in Variational autoencoders.

• f -divergences, Wasserstein distances

• Generative adversarial networks (f-GANs, WGANs).

Plan for today: Evaluating generative models
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Evaluation

• In any research field, evaluation drives progress. How do we

evaluate generative models?

• Evaluating generative models is highly non-trivial.

• Key question: What is the task that you care about?

• Density estimation

• Compression

• Sampling/generation

• Latent representation learning

• More than one task? Custom downstream task? E.g.,

Semisupervised learning, image translation, compressive

sensing etc.
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Evaluation - Density Estimation or Compression

• Straightforward for models which have tractable likelihoods
• Split dataset into train, validation, test sets

• Evaluate gradients based on train set

• Tune hyperparameters (e.g., learning rate, neural network

architecture) based on validation set

• Evaluate generalization by reporting likelihoods on test set

• Caveat: Not all models have tractable likelihoods e.g., VAEs,

GANs, EBMs

• For VAEs, we can compare evidence lower bounds (ELBO) to

log-likelihoods. How about GANs? How to estimate the

model likelihood if we only have samples?

In general, unbiased estimation of density functions from samples

is impossible. Approximation methods are necessary. We can use

kernel density estimates via samples alone.
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Kernel Density Estimation

• Given: A model pθ(x) with an intractable/ill-defined density

• Let S = {x(1), x(2), · · · , x(6)} be 6 data points drawn from pθ.

x(1) x(2) x(3) x(4) x(5) x(6)

-2.1 -1.3 -0.4 1.9 5.1 6.2

• What is pθ(−0.5)?

• Answer 1: Since −0.5 6∈ S, pθ(−0.5) = 0

• Answer 2: Compute a histogram by binning the samples

• Bin width= 2, min height= 1/12 (area under histogram

should equal 1). What is pθ(−0.5)? 1/6 pθ(−1.99)? 1/6

pθ(−2.01)? 1/12
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Kernel Density Estimation

• Answer 3: Compute kernel density estimate (KDE) over S

p̂(x) =
1

n

∑
x(i)∈S

K

(
x− x(i)

σ

)
where σ is called the bandwidth parameter and K is called the

kernel function.

• Example: Gaussian kernel, K (u) = 1√
2π

exp
(
−1

2u
2
)

• Histogram density estimate vs. KDE estimate with Gaussian

kernel
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Kernel Density Estimation

• A kernel K is any non-negative function satisfying:
• Normalization:

∫∞
−∞ K (u)du = 1 (ensures KDE is also

normalized)

• Symmetric: K (u) = K (−u) for all u

• Intuitively, a kernel is a measure of similarity between pairs of

points (function is higher when the difference in points is low)
• Bandwidth σ controls the smoothness (see right figure)

• Optimal sigma (black) is such that KDE is close to true

density (grey)

• Low sigma (red curve): undersmoothed

• High sigma (green curve): oversmoothed

• Tuned via crossvalidation

• Con: KDE is very unreliable in higher dimensions
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Importance Sampling for latent variable models

• Likelihood weighting:
p(x) = Ep(z)[p(x|z)]

Can have high variance if p(z) is far from p(z|x)!

• Annealed importance sampling: Construct a sequence of

intermediate distributions that gradually interpolate from p(z)

to the unnormalized estimate of p(z|x)

• General purpose technique to estimate ratios of normalizing

constants Z2/Z1 of any two unnormalized distributions

• For estimating p(x), first distribution is p(z) (with Z1 = 1)

and second distribution is p(x|z)p(z) (with

Z2 = p(x) =
∫
x p(x, z)dz)

• Gives unbiased estimates of likelihoods, but biased estimates

of log-likelihoods

• A good implementation available in Tensorflow probability
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Evaluation - Sample quality

• Which of these two sets of generated samples “look” better?

• Human evaluations (e.g., Mech Turk) are the gold standard.

HYPE: Human eYe Perceptual Evaluation (Zhou et al., 2019)

• HYPEtime: the minimum time people needed to make

accurate classifications. The larger, the better.

• HYPE∞: The percentage of samples that deceive people

under unlimited time. The larger, the better.

• https://stanfordhci.github.io/gen-eval/
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Evaluation - Sample quality

The process of

determining HYPEtime

scores.

HYPE∞ scores for samples generated from a StyleGAN.
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Evaluation - Sample quality

• Which of these two sets of generated samples “look” better?

• Human evaluations (e.g., Mechanical Turk) are expensive,

biased, hard to reproduce

• Generalization is hard to define and assess: memorizing the

training set would give excellent samples but clearly

undesirable

• Quantitative evaluation of a qualitative task can have many

answers

• Popular metrics: Inception Scores, Frechet Inception Distance,

Kernel Inception Distance 12 / 24



Inception Scores

• Assumption 1: We are evaluating sample quality for

generative models trained on labelled datasets

• Assumption 2: We have a good probabilistic classifier c(y |x)

for predicting the label y for any point x

• We want samples from a good generative model to satisfy two

criteria: sharpness and diversity

• Sharpness (S)

S = exp

(
Ex∼p

[∫
c(y |x) log c(y |x)dy

])
• High sharpness implies classifier is confident in making

predictions for generated images

• That is, classifier’s predictive distribution c(y |x) has low

entropy 13 / 24



Inception Scores

• Diversity (D)

D = exp

(
−Ex∼p

[∫
c(y |x) log c(y)dy

])
where c(y) = Ex∼p[c(y |x)] is the classifier’s marginal

predictive distribution

• High diversity implies c(y) has high entropy

• Inception scores (IS) combine the two criteria of sharpness

and diversity into a simple metric

IS = D × S

• Higher IS corresponds to better quality.

• If classifier is not available, a classifier trained on a large

dataset, e.g., Inception Net trained on the ImageNet dataset
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Frechet Inception Distance

• Inception Scores only require samples from pθ and do not take

into account the desired data distribution pdata directly (only

implicitly via a classifier)

• Frechet Inception Distance (FID) measures similarities in

the feature representations (e.g., those learned by a pretrained

classifier) for datapoints sampled from pθ and the test dataset
• Computing FID:

• Let G, T denote the generated samples and the test dataset

• Compute feature representations FG and FT for G and T
respectively (e.g., prefinal layer of Inception Net)

• Fit a multivariate Gaussian to each of FG and FT . Let

(µG ,ΣG) and (µT ,ΣT ) denote their mean and covariances

• FID: Wasserstein-2 distance between these two Gaussians:

FID = ‖µT − µG‖2 + Tr(ΣT + ΣG − 2(ΣT ΣG)1/2)

• Lower FID implies better sample quality
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Kernel Inception Distance

• Maximum Mean Discrepancy (MMD) is a two-sample test

statistic that compares samples from two distributions p and q

based on differences in their moments (mean, variances etc.)

• Key idea: Use a suitable kernel e.g., Gaussian to measure

similarity between points

MMD(p, q) = Ex,x′∼p[K (x, x′)]+Ex,x′∼q[K (x, x′)]−2Ex∼p,x′∼q[K (x, x′)]

• Intuitively, MMD is comparing the “similarity” between

samples within p and q individually to the samples from the

mixture of p and q

• Kernel Inception Distance (KID): compute the MMD in

the feature space of a classifier (e.g., Inception Network)
• FID vs. KID

• FID is biased (can only be positive), KID is unbiased

• FID can be evaluated in O(n) time, KID evaluation requires

O(n2) time 16 / 24



Evaluating sample quality - Best practices

• Spend time tuning your baselines (architecture, learning rate,

optimizer etc.). Be amazed (rather than dejected) at how well

they can perform

• Use random seeds for reproducibility

• Report results averaged over multiple random seeds along

with confidence intervals
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Evaluating latent representations

• What does it mean to learn “good” latent representations?

• For a downstream task, the representations can be evaluated

based on the corresponding performance metrics e.g.,

accuracy for semi-supervised learning, reconstruction quality

for denoising

• For unsupervised tasks, there is no one-size-fits-all

• Three commonly used notions for evaluating unsupervised
latent representations

• Clustering

• Compression

• Disentanglement
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Clustering

• Representations that can group together points based on

some semantic attribute are potentially useful (e.g.,

semi-supervised classification)

• Clusters can be obtained by applying k-means or any other

algorithm in the latent space of generative model

• 2D representations learned by two generative models for

MNIST digits with colors denoting true labels. Which is

better? B or D?
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Clustering

• For labelled datasets, there exists many quantitative evaluation

metrics. Note labels are only used for evaluation, not obtaining

clusters itself (i.e., clustering is unsupervised)

• from sklearn.metrics.cluster import

completeness score, homogeneity score, v measure score

• Completeness score (between [0, 1]): maximized when all the

data points that are members of a given class are elements of the

same cluster completeness score(labels true=[0, 0, 1, 1],

labels pred=[0, 1, 0, 1]) % 0

• Homogeneity score (between [0, 1]): maximized when all of its

clusters contain only data points which are members of a single

class homogeneity score(labels true=[0, 0, 1, 1],

labels pred=[1, 1, 0, 0]) % 1

• V measure score (also called normalized mutual information,

between [0, 1]): harmonic mean of completeness and homogeneity

score v measure score(labels true=[0, 0, 1, 1],

labels pred=[1, 1, 0, 0]) % 1 20 / 24



Lossy Compression or Reconstruction

• Latent representations can be evaluated based on the

maximum compression they can achieve without significant

loss in reconstruction accuracy

• Standard metrics such as Mean Squared Error (MSE), Peak

Signal to Noise Ratio (PSNR), Structure Similarity Index

(SSIM)
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Disentanglement

• Intuitively, we want representations that disentangle

independent and interpretable attributes of the observed

data

• Provide user control over the attributes of the generated data
• When Z1 is fixed, size of the generated object never changes

• When Z1 is changed, the change is restricted to the size of the

generated object
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Disentanglement

• Many quantitative evaluation metrics

• Beta-VAE metric (Higgins et al., 2017): Accuracy of a linear

classifier that predicts a fixed factor of variation

• Many other metrics: Factor-VAE metric, Mutual Information

Gap, SAP score, DCI disentanglement, Modularity

• Check disentanglement lib for implementations of these

metrics

• Disentangling generative factors is theoretically impossible

without additional assumptions
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Summary

• Quantitative evaluation of generative models is a challenging

task

• For downstream applications, one can rely on

application-specific metrics

• For unsupervised evaluation, metrics can significantly vary

based on end goal: density estimation, sampling, latent

representations
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