
Deep Generative Models

Lecture 9: Generative Adversarial Networks

Aditya Grover

UCLA

1 / 23

Recap

• Model families

• Autoregressive Models: pθ(x) =
∏n

i=1 pθ(xi |x<i)

• Variational Autoencoders: pθ(x) =
∫
pθ(x, z)dz

• Normalizing Flow Models:

pX (x; θ) = pZ
(
f−1
θ (x)

) ∣∣∣det(∂f−1
θ (x)
∂x

)∣∣∣
• All the above families are based on maximizing likelihoods (or

approximations)

2 / 23

Why maximum likelihood?

θ̂ = arg max θ
n∑

i=1

log pθ(xi), x1, x2, · · · , xn ∼ pdata(x)

• Optimal statistical efficiency.

• Assume sufficient model capacity, such that there exists a

unique θ∗ ∈M that satisfies pθ∗ = pdata.

• The convergence of θ̂ to θ∗ when n→∞ is the “fastest”

among all statistical methods when using maximum likelihood

training.

• Higher likelihood = better lossless compression.

• Is the likelihood a good indicator of the quality of samples

generated by the model?

3 / 23

Towards likelihood-free learning

Case 1: Optimal generative model will give best sample quality

and highest test log-likelihood

For imperfect models, achieving high log-likelihoods might not

always imply good sample quality, and vice-versa (Theis et al.,

2016)

4 / 23

Towards likelihood-free learning

Case 2: Great test log-likelihoods, poor samples. E.g., For a

discrete noise mixture model pθ(x) = 0.01pdata(x) + 0.99pnoise(x)
• 99% of the samples are just noise
• Taking logs, we get a lower bound

log pθ(x) = log[0.01pdata(x) + 0.99pnoise(x)]

≥ log 0.01pdata(x) = log pdata(x)− log 100

• For expected likelihoods, we know that
• Lower bound

Epdata
[log pθ(x)] ≥ Epdata

[log pdata(x)]− log 100

• Upper bound (via non-negativity of KL)

Epdata
[log pdata(x))] ≥ Epdata

[log pθ(x)]

• As we increase the dimension of x, absolute value of

log pdata(x) increases proportionally but log 100 remains

constant. Hence, Epdata [log pθ(x)] ≈ Epdata [log pdata(x)] in

very high dimensions 5 / 23

Towards likelihood-free learning

Case 3: Great samples, poor test log-likelihoods. E.g., Memorizing

training set

• Samples look exactly like the training set (cannot do better!)

• Test set will have zero probability assigned (cannot do worse!)

Takeaways:

• The above cases suggest that it might be useful to

disentangle likelihoods and samples

• Likelihood-free learning consider objectives that do not

depend directly on a likelihood function

6 / 23

Comparing distributions via samples

Given a finite set of samples from two distributions S1 = {x ∼ P}
and S2 = {x ∼ Q}, how can we tell if these samples are from the

same distribution? (i.e., P = Q?)

7 / 23

Two-sample tests

• Given S1 = {x ∼ P} and S2 = {x ∼ Q}, a two-sample test
considers the following hypotheses

• Null hypothesis H0: P = Q

• Alternative hypothesis H1: P 6= Q

• Test statistic T compares S1 and S2 e.g., difference in means,

variances of the two sets of samples

• If T is larger than a threshold α, then reject H0 otherwise we

say H0 is consistent with observation.

• Key observation: Test statistic is likelihood-free since it

does not involve the densities P or Q (only samples)

8 / 23

Generative modeling and two-sample tests

• A priori we assume direct access to S1 = D = {x ∼ pdata}
• In addition, we have a model distribution pθ

• Assume that the model distribution permits efficient sampling

(e.g., directed models). Let S2 = {x ∼ pθ}
• Alternative notion of distance between distributions:

Train the generative model to minimize a two-sample test

objective between S1 and S2

9 / 23

Two-Sample Test via a Discriminator

• Finding a two-sample test objective in high dimensions is hard

• In the generative model setup, we know that S1 and S2 come

from different distributions pdata and pθ respectively

• Key idea: Learn a statistic that maximizes a suitable notion

of distance between the two sets of samples S1 and S2

10 / 23

Two-Sample Test via a Discriminator

x

y

Dφ

• Two-Sample Test via a Discriminator

• Any function (e.g., neural network) which tries to distinguish

“real” samples from the dataset and “fake” samples generated

from the model

• Maximizes the two-sample test objective (in support of the

alternative hypothesis pdata 6= pθ)

11 / 23

Two-Sample Test via a Discriminator

• Training objective for discriminator:

max
D

V (G ,D) = Ex∼pdata [logD(x)] + Ex∼pG [log(1− D(x))]

• For a fixed generator G , the discriminator is performing binary
classification with the cross entropy objective

• Assign probability 1 to true data points x ∼ pdata
• Assign probability 0 to fake samples x ∼ pG

• Optimal discriminator

D∗
G (x) =

pdata(x)

pdata(x) + pG (x)

12 / 23

Generative Adversarial Networks

• A two player minimax game between a generator and a

discriminator

x

z

Gθ

• Generator

• Directed, latent variable model with a deterministic mapping

between z and x given by Gθ
• Minimizes a two-sample test objective (in support of the null

hypothesis pdata = pθ)

13 / 23

Example of GAN objective

• Training objective for generator:

min
G

max
D

V (G ,D) = Ex∼pdata [logD(x)] + Ex∼pG [log(1−D(x))]

• For the optimal discriminator D∗
G (·), we have

V (G ,D∗
G (x))

= Ex∼pdata

[
log pdata(x)

pdata(x)+pG (x)

]
+ Ex∼pG

[
log pG (x)

pdata(x)+pG (x)

]
= Ex∼pdata

[
log pdata(x)

pdata(x)+pG (x)

2

]
+ Ex∼pG

[
log pG (x)

pdata(x)+pG (x)

2

]
− log 4

= DKL

[
pdata,

pdata + pG
2

]
+ DKL

[
pG ,

pdata + pG
2

]
︸ ︷︷ ︸

2×Jenson-Shannon Divergence (JSD)

− log 4

= 2DJSD [pdata, pG]− log 4

14 / 23

Jenson-Shannon Divergence

• Also called as the symmetric KL divergence

DJSD [p, q] =
1

2

(
DKL

[
p,

p + q

2

]
+ DKL

[
q,

p + q

2

])
• Properties

• DJSD [p, q] ≥ 0

• DJSD [p, q] = 0 iff p = q

• DJSD [p, q] = DJSD [q, p]

•
√
DJSD [p, q] satisfies triangle inequality → Jenson-Shannon

Distance

• Optimal generator for the JSD/Negative Cross Entropy GAN

pG = pdata

• For the optimal discriminator D∗
G∗(·) and generator G ∗(·), we

have

V (G ∗,D∗
G∗(x)) = − log 4

15 / 23

The GAN training algorithm

• Sample minibatch of m training points x(1), x(2), . . . , x(m)

from D
• Sample minibatch of m noise vectors z(1), z(2), . . . , z(m) from

pz

• Update the discriminator parameters φ by stochastic gradient

ascent

∇φV (Gθ,Dφ) =
1

m
∇φ

m∑
i=1

[logDφ(x(i))+log(1−Dφ(Gθ(z(i))))]

• Update the generator parameters θ by stochastic gradient

descent

∇θV (Gθ,Dφ) =
1

m
∇θ

m∑
i=1

log(1− Dφ(Gθ(z(i))))

• Repeat for fixed number of epochs 16 / 23

Alternating optimization in GANs

min
θ

max
φ

V (Gθ,Dφ) = Ex∼pdata [logDφ(x)]+Ez∼p(z)[log(1−Dφ(Gθ(z)))]

17 / 23

Frontiers in GAN research

• GANs have been successfully applied to several domains and

tasks
• However, working with GANs can be very challenging in

practice
• Unstable optimization

• Mode collapse

• Evaluation

• Many bag of tricks applied to train GANs successfully

Image Source: Ian Goodfellow. Samples from Goodfellow et al., 2014,

Radford et al., 2015, Liu et al., 2016, Karras et al., 2017, Karras et al., 2018

18 / 23

Optimization challenges

• Theorem (informal): If the generator updates are made in

function space and discriminator is optimal at every step, then

the generator is guaranteed to converge to the data

distribution

• Unrealistic assumptions!

• In practice, the generator and discriminator loss keeps

oscillating during GAN training

Source: Mirantha Jayathilaka

• No robust stopping criteria in practice (unlike MLE)
19 / 23

Mode Collapse

• GANs are notorious for suffering from mode collapse

• Intuitively, this refers to the phenomena where the generator

of a GAN collapses to one or few samples (dubbed as

“modes”)

20 / 23

Mode Collapse

• True distribution is a mixture of Gaussians

• The generator distribution keeps oscillating between different

modes 21 / 23

Mode Collapse

• Fixes to mode collapse are mostly empirically driven:

alternative architectures, alternative GAN loss, adding

regularization terms, etc.

• https://github.com/soumith/ganhacks

How to Train a GAN? Tips and tricks to make GANs work by

Soumith Chintala

22 / 23

https://github.com/soumith/ganhacks

Beauty lies in the eyes of the discriminator

Source: Robbie Barrat, Obvious

GAN generated art auctioned at Christie’s.

Expected Price: $7, 000− $10, 000

True Price: $432, 500

23 / 23

