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Recap.

• Likelihood-free training

• Training objective for GANs

min
G

max
D

V (G ,D) = Ex∼pdata
[logD(x)] + Ex∼pG [log(1− D(x))]

• With the optimal discriminator D∗G , we see GAN minimizes a

scaled and shifted Jensen-Shannon divergence

min
G

2DJSD [pdata, pG ]− log 4

• Parameterize D by φ and G by θ. Prior distribution p(z).

min
θ

max
φ

Ex∼pdata
[logDφ(x)] + Ez∼p(z)[log(1− Dφ(Gθ(z)))]
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Selected GANs

• https://github.com/hindupuravinash/the-gan-zoo

The GAN Zoo: List of all named GANs

• Today

• Rich class of likelihood-free objectives via f -GANs

• Wasserstein GAN

• Inferring latent representations via BiGAN

• Application: Image-to-image translation via CycleGANs
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Beyond KL and Jenson-Shannon Divergence

What choices do we have for d(·)?

• KL divergence: Autoregressive Models, Flow models

• (scaled and shifted) Jenson-Shannon divergence: original GAN

objective
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f divergences

• Given two densities p and q, the f -divergence is given by

Df (p, q) = Ex∼q

[
f

(
p(x)

q(x)

)]
where f is any convex, lower-semicontinuous function with

f (1) = 0.

• Convex: Line joining any two points lies above the function

• Lower-semicontinuous: function value at any point x0 is close

to f (x0) or greater than f (x0)

• Jensen’s inequality:

Ex∼q[f (p(x)/q(x))] ≥ f (Ex∼q[p(x)/q(x)]) = f (1) = 0

• Example: KL divergence with f (u) = u log u 5 / 26



f divergences

Many more f-divergences!
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f -GAN: Variational Divergence Minimization

• To use f -divergences as a two-sample test objective for

likelihood-free learning, we need to be able to estimate it only

via samples

• Fenchel conjugate: For any function f (·), its convex conjugate

is defined as

f ∗(t) = sup
u∈domf

(ut − f (u))

• f ∗ is always convex and lower semi-continuous.

• f ∗∗ ≤ f .

• Duality: f ∗∗ = f when f (·) is convex, lower semicontinous.

Equivalently,

f (u) = f ∗∗(u) = sup
t∈domf ∗

(tu − f ∗(t))
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f -GAN: Variational Divergence Minimization

• We can obtain a lower bound to any f -divergence via its

Fenchel conjugate

Df (p, q) = Ex∼q

[
f
(
p(x)
q(x)

)]
= Ex∼q

[
supt∈domf ∗

(
t p(x)
q(x) − f ∗(t)

)]
:= Ex∼q

[
T ∗(x)p(x)

q(x) − f ∗(T ∗(x))
]

=
∫
X [T ∗(x)p(x)− f ∗(T ∗(x))q(x)] dx

= supT

∫
X [T (x)p(x)− f ∗(T (x))q(x)]dx

≥ supT∈T
∫
X (T (x)p(x)− f ∗(T (x))q(x))dx

= supT∈T (Ex∼p [T (x)]− Ex∼q [f ∗(T (x)))])

where T : X 7→ R is an arbitrary class of functions

• Note: Lower bound is likelihood-free w.r.t. p and q
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f -GAN: Variational Divergence Minimization

• Variational lower bound

Df (p, q) ≥ sup
T∈T

(Ex∼p [T (x)]− Ex∼q [f ∗(T (x)))])

• Choose any f -divergence

• Let p = pdata and q = pG

• Parameterize T by φ and G by θ

• Consider the following f -GAN objective

min
θ

max
φ

F (θ, φ) = Ex∼pdata
[Tφ(x)]− Ex∼pGθ [f ∗(Tφ(x)))]

• Generator Gθ tries to minimize the divergence estimate and

discriminator Tφ tries to tighten the lower bound

• Substitute any f -divergence and optimize the f -GAN objective

9 / 26



Wasserstein GAN: beyond f -divergences

The f -divergence is defined as

Df (p, q) = Ex∼q

[
f

(
p(x)

q(x)

)]

• The support of q has to cover the support of p. Otherwise
discontinuity arises in f -divergences.

• Let p(x) =

{
1, x = 0

0, x 6= 0
, and qθ(x) =

{
1, x = θ

0, x 6= θ
.

• DKL(p, qθ) =

{
0, θ = 0

∞, θ 6= 0
.

• DJS(p, qθ) =

{
0, θ = 0

log 2, θ 6= 0
.

• We need a “smoother” distance D(p, q) that is defined when

p and q have disjoint supports.
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Wasserstein (Earth-Mover) distance

• Wasserstein distance

Dw (p, q) = inf
γ∈Π(p,q)

E(x,y)∼γ [‖x− y‖1],

where Π(p, q) contains all joint distributions of (x, y) where

the marginal of x is p(x), and the marginal of y is q(y).

• γ(y | x): a probabilistic earth moving plan that warps p(x) to

q(y).

• Let p(x) =

1, x = 0

0, x 6= 0
, and qθ(x) =

1, x = θ

0, x 6= θ
.

• Dw (p, qθ) = |θ|. 11 / 26



Wasserstein GAN (WGAN)

• Kantorovich-Rubinstein duality

Dw (p, q) = sup
‖f ‖L≤1

Ex∼p[f (x)]− Ex∼q[f (x)]

‖f ‖L ≤ 1 means the Lipschitz constant of f (x) is 1.

Technically,

∀x, y : |f (x)− f (y)| ≤ ‖x− y‖1

• Wasserstein GAN with discriminator Dφ(x) and generator

Gθ(z):

min
θ

max
φ

Ex∼pdata
[Dφ(x)]− Ez∼p(z)[Dφ(Gθ(z))]

Lipschitzness of Dφ(x) is enforced through weight clipping or

gradient penalty.

12 / 26



Wasserstein GAN (WGAN)

• More stable training, and less mode collapse.
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Inferring latent representations in GANs

• The generator of a GAN is typically a directed, latent variable

model with latent variables z and observed variables x How

can we infer the latent feature representations in a GAN?

• Unlike a normalizing flow model, the mapping G : z 7→ x need

not be invertible

• Unlike a variational autoencoder, there is no inference network

q(·) which can learn a variational posterior over latent

variables

• Solution 1: For any point x, use the activations of the

prefinal layer of a discriminator as a feature representation

• Intuition: Similar to supervised deep neural networks, the

discriminator would have learned useful representations for x

while distinguishing real and fake x
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Inferring latent representations in GANs

• If we want to directly infer the latent variables z of the

generator, we need a different learning algorithm

• A regular GAN optimizes a two-sample test objective that

compares samples of x from the generator and the data

distribution

• Solution 2: To infer latent representations, we will compare

samples of x, z from the joint distributions of observed and

latent variables as per the model and the data distribution

• For any x generated via the model, we have access to z

(sampled from a simple prior p(z))

• For any x from the data distribution, the z is however

unobserved (latent)
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Bidirectional Generative Adversarial Networks (BiGAN)

• In a BiGAN, we have an encoder network E in addition to the

generator network G

• The encoder network only observes x ∼ pdata(x) during

training to learn a mapping E : x 7→ z

• As before, the generator network only observes the samples

from the prior z ∼ p(z) during training to learn a mapping

G : z 7→ x
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Bidirectional Generative Adversarial Networks (BiGAN)

• The discriminator D observes samples from the generative

model z,G (z) and the encoding distribution E (x), x

• The goal of the discriminator is to maximize the two-sample

test objective between z,G (z) and E (x), x

• After training is complete, new samples are generated via G

and latent representations are inferred via E
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Translating across domains

• Image-to-image translation: We are given images from two

domains, X and Y
• Paired vs. unpaired examples

• Paired examples can be expensive to obtain. Can we translate

from X ↔ Y in an unsupervised manner?

18 / 26



CycleGAN: Adversarial training across two domains

• To match the two distributions, we learn two parameterized

conditional generative models G : X ↔ Y and F : Y ↔ X
• G maps an element of X to an element of Y. A discriminator

DY compares the observed dataset Y and the generated

samples Ŷ = G (X )

• Similarly, F maps an element of Y to an element of X . A

discriminator DX compares the observed dataset X and the

generated samples X̂ = F (Y )
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CycleGAN: Cycle consistency across domains

• Cycle consistency: If we can go from X to Ŷ via G , then it
should also be possible to go from Ŷ back to X via F
• F (G (X )) ≈ X

• Similarly, vice versa: G (F (Y )) ≈ Y

• Overall loss function

min
F ,G ,DX ,DY

LGAN(G ,DY ,X ,Y ) + LGAN(F ,DX ,X ,Y )

+λ (EX [‖F (G (X ))− X‖1] + EY [‖G (F (Y ))− Y ‖1])︸ ︷︷ ︸
cycle consistency
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CycleGAN in practice
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AlignFlow (Grover et al.)

• What if G is a flow model?

• No need to parameterize F separately! F = G−1

• Can train via MLE and/or adversarial learning!

• Exactly cycle-consistent

F(G(X)) = X

G(F(Y)) = Y
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StarGAN (Choi et al.)

• What if there are multiple domains?
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StarGAN (Choi et al.)
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StarGAN (Choi et al.)
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Summary of Generative Adversarial Networks

• Key observation: Samples and likelihoods are not correlated in

practice

• Two-sample test objectives allow for learning generative

models only via samples (likelihood-free)

• Wide range of two-sample test objectives covering

f -divergences and Wasserstein distances (and more)

• Latent representations can be inferred via BiGAN

• Cycle-consistent domain translations via CycleGAN, AlignFlow

and StarGAN.
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