Deep Generative Models
 Lecture 7: Normalizing Flows

Aditya Grover
UCLA

Recap of likelihood-based learning so far:

Recap of likelihood-based learning so far:

- Model families:
- Autoregressive Models: $p_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\theta}\left(x_{i} \mid \mathbf{x}_{<i}\right)$
- Variational Autoencoders: $p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x}, \mathbf{z}) d \mathbf{z}$

Recap of likelihood-based learning so far:

- Model families:
- Autoregressive Models: $p_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\theta}\left(x_{i} \mid \mathbf{x}_{<i}\right)$
- Variational Autoencoders: $p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x}, \mathbf{z}) d \mathbf{z}$
- Autoregressive models provide tractable likelihoods but no direct mechanism for learning features

Recap of likelihood-based learning so far:

- Model families:
- Autoregressive Models: $p_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\theta}\left(x_{i} \mid \mathbf{x}_{<i}\right)$
- Variational Autoencoders: $p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x}, \mathbf{z}) d \mathbf{z}$
- Autoregressive models provide tractable likelihoods but no direct mechanism for learning features
- Variational autoencoders can learn feature representations (via latent variables z) but have intractable marginal likelihoods

Recap of likelihood-based learning so far:

- Model families:
- Autoregressive Models: $p_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\theta}\left(x_{i} \mid \mathbf{x}_{<i}\right)$
- Variational Autoencoders: $p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x}, \mathbf{z}) d \mathbf{z}$
- Autoregressive models provide tractable likelihoods but no direct mechanism for learning features
- Variational autoencoders can learn feature representations (via latent variables z) but have intractable marginal likelihoods
- Key question: Can we design a latent variable model with tractable likelihoods?

Recap of likelihood-based learning so far:

- Model families:
- Autoregressive Models: $p_{\theta}(\mathbf{x})=\prod_{i=1}^{n} p_{\theta}\left(x_{i} \mid \mathbf{x}_{<i}\right)$
- Variational Autoencoders: $p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x}, \mathbf{z}) d \mathbf{z}$
- Autoregressive models provide tractable likelihoods but no direct mechanism for learning features
- Variational autoencoders can learn feature representations (via latent variables z) but have intractable marginal likelihoods
- Key question: Can we design a latent variable model with tractable likelihoods? Yes!

Simple Prior to Complex Data Distributions

- Desirable properties of any model distribution $p_{\theta}(\mathbf{x})$:
- Easy-to-evaluate, closed form density (useful for training)
- Easy-to-sample (useful for generation)

Simple Prior to Complex Data Distributions

- Desirable properties of any model distribution $p_{\theta}(\mathbf{x})$:
- Easy-to-evaluate, closed form density (useful for training)
- Easy-to-sample (useful for generation)
- Many simple distributions satisfy the above properties e.g., Gaussian, uniform distributions

Simple Prior to Complex Data Distributions

- Desirable properties of any model distribution $p_{\theta}(\mathbf{x})$:
- Easy-to-evaluate, closed form density (useful for training)
- Easy-to-sample (useful for generation)
- Many simple distributions satisfy the above properties e.g., Gaussian, uniform distributions

- Unfortunately, data distributions are more complex (multi-modal)

Simple Prior to Complex Data Distributions

- Desirable properties of any model distribution $p_{\theta}(\mathbf{x})$:
- Easy-to-evaluate, closed form density (useful for training)
- Easy-to-sample (useful for generation)
- Many simple distributions satisfy the above properties e.g., Gaussian, uniform distributions

- Unfortunately, data distributions are more complex (multi-modal)

Simple Prior to Complex Data Distributions

- Desirable properties of any model distribution $p_{\theta}(\mathbf{x})$:
- Easy-to-evaluate, closed form density (useful for training)
- Easy-to-sample (useful for generation)
- Many simple distributions satisfy the above properties e.g., Gaussian, uniform distributions

- Unfortunately, data distributions are more complex (multi-modal)

- Key idea behind flow models: Map simple distributions (easy to sample and evaluate densities) to complex distributions through an invertible transformation.

Variational Autoencoder

A flow model is similar to a variational autoencoder (VAE):

1. Start from a simple prior: $\mathbf{z} \sim \mathcal{N}(0, I)=p(\mathbf{z})$

Variational Autoencoder

A flow model is similar to a variational autoencoder (VAE):

1. Start from a simple prior: $\mathbf{z} \sim \mathcal{N}(0, I)=p(\mathbf{z})$
2. Transform via $p(\mathbf{x} \mid \mathbf{z})=\mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})\right)$

Variational Autoencoder

A flow model is similar to a variational autoencoder (VAE):

1. Start from a simple prior: $\mathbf{z} \sim \mathcal{N}(0, I)=p(\mathbf{z})$
2. Transform via $p(\mathbf{x} \mid \mathbf{z})=\mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})\right)$
3. Even though $p(\mathbf{z})$ is simple, the marginal $p_{\theta}(\mathbf{x})$ is very expressive.

Variational Autoencoder

A flow model is similar to a variational autoencoder (VAE):

1. Start from a simple prior: $\mathbf{z} \sim \mathcal{N}(0, I)=p(\mathbf{z})$
2. Transform via $p(\mathbf{x} \mid \mathbf{z})=\mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})\right)$
3. Even though $p(\mathbf{z})$ is simple, the marginal $p_{\theta}(\mathbf{x})$ is very expressive. However, $p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x}, \mathbf{z}) d \mathbf{z}$ is expensive to compute: need to consider all \mathbf{z} that could have generated \mathbf{x}

Variational Autoencoder

A flow model is similar to a variational autoencoder (VAE):

1. Start from a simple prior: $\mathbf{z} \sim \mathcal{N}(0, I)=p(\mathbf{z})$
2. Transform via $p(\mathbf{x} \mid \mathbf{z})=\mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})\right)$
3. Even though $p(\mathbf{z})$ is simple, the marginal $p_{\theta}(\mathbf{x})$ is very expressive. However, $p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x}, \mathbf{z}) d \mathbf{z}$ is expensive to compute: need to consider all \mathbf{z} that could have generated \mathbf{x}
4. What if we could easily "invert" $p(\mathbf{x} \mid \mathbf{z})$ and compute $p(\mathbf{z} \mid \mathbf{x})$ by design?

Variational Autoencoder

A flow model is similar to a variational autoencoder (VAE):

1. Start from a simple prior: $\mathbf{z} \sim \mathcal{N}(0, I)=p(\mathbf{z})$
2. Transform via $p(\mathbf{x} \mid \mathbf{z})=\mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})\right)$
3. Even though $p(\mathbf{z})$ is simple, the marginal $p_{\theta}(\mathbf{x})$ is very expressive. However, $p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x}, \mathbf{z}) d \mathbf{z}$ is expensive to compute: need to consider all \mathbf{z} that could have generated \mathbf{x}
4. What if we could easily "invert" $p(\mathbf{x} \mid \mathbf{z})$ and compute $p(\mathbf{z} \mid \mathbf{x})$ by design? How? Make $\mathbf{x}=f_{\theta}(\mathbf{z})$ a deterministic and invertible function of \mathbf{z}

Continuous random variables refresher

- Let X be a continuous random variable

Continuous random variables refresher

- Let X be a continuous random variable
- The cumulative density function (CDF) of X is $F_{X}(a)=P(X \leq a)$

Continuous random variables refresher

- Let X be a continuous random variable
- The cumulative density function (CDF) of X is

$$
F_{X}(a)=P(X \leq a)
$$

- The probability density function (pdf) of X is

$$
p_{X}(a)=F_{X}^{\prime}(a)=\frac{d F_{X}(a)}{d a}
$$

Continuous random variables refresher

- Let X be a continuous random variable
- The cumulative density function (CDF) of X is

$$
F_{X}(a)=P(X \leq a)
$$

- The probability density function (pdf) of X is

$$
p_{X}(a)=F_{X}^{\prime}(a)=\frac{d F_{X}(a)}{d a}
$$

- Typically consider parameterized densities:
- Gaussian: $X \sim \mathcal{N}(\mu, \sigma)$ if $p_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$

Continuous random variables refresher

- Let X be a continuous random variable
- The cumulative density function (CDF) of X is

$$
F_{X}(a)=P(X \leq a)
$$

- The probability density function (pdf) of X is

$$
p_{X}(a)=F_{X}^{\prime}(a)=\frac{d F_{X}(a)}{d a}
$$

- Typically consider parameterized densities:
- Gaussian: $X \sim \mathcal{N}(\mu, \sigma)$ if $p_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$
- Uniform: $X \sim \mathcal{U}(a, b)$ if $p_{X}(x)=\frac{1}{b-a} 1[a \leq x \leq b]$

Continuous random variables refresher

- Let X be a continuous random variable
- The cumulative density function (CDF) of X is

$$
F_{X}(a)=P(X \leq a)
$$

- The probability density function (pdf) of X is

$$
p_{X}(a)=F_{X}^{\prime}(a)=\frac{d F_{X}(a)}{d a}
$$

- Typically consider parameterized densities:
- Gaussian: $X \sim \mathcal{N}(\mu, \sigma)$ if $p_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$
- Uniform: $X \sim \mathcal{U}(a, b)$ if $p_{X}(x)=\frac{1}{b-a} 1[a \leq x \leq b]$
- Etc.

Continuous random variables refresher

- Let X be a continuous random variable
- The cumulative density function (CDF) of X is

$$
F_{X}(a)=P(X \leq a)
$$

- The probability density function (pdf) of X is

$$
p_{X}(a)=F_{X}^{\prime}(a)=\frac{d F_{X}(a)}{d a}
$$

- Typically consider parameterized densities:
- Gaussian: $X \sim \mathcal{N}(\mu, \sigma)$ if $p_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$
- Uniform: $X \sim \mathcal{U}(a, b)$ if $p_{X}(x)=\frac{1}{b-a} 1[a \leq x \leq b]$
- Etc.

Continuous random variables refresher

- Let X be a continuous random variable
- The cumulative density function (CDF) of X is

$$
F_{X}(a)=P(X \leq a)
$$

- The probability density function (pdf) of X is

$$
p_{X}(a)=F_{X}^{\prime}(a)=\frac{d F_{X}(a)}{d a}
$$

- Typically consider parameterized densities:
- Gaussian: $X \sim \mathcal{N}(\mu, \sigma)$ if $p_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$
- Uniform: $X \sim \mathcal{U}(a, b)$ if $p_{X}(x)=\frac{1}{b-a} 1[a \leq x \leq b]$
- Etc.
- If \boldsymbol{X} is a continuous random vector, we can usually represent it using its joint probability density function:

Continuous random variables refresher

- Let X be a continuous random variable
- The cumulative density function (CDF) of X is

$$
F_{X}(a)=P(X \leq a)
$$

- The probability density function (pdf) of X is

$$
p_{X}(a)=F_{X}^{\prime}(a)=\frac{d F_{X}(a)}{d a}
$$

- Typically consider parameterized densities:
- Gaussian: $X \sim \mathcal{N}(\mu, \sigma)$ if $p_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$
- Uniform: $X \sim \mathcal{U}(a, b)$ if $p_{X}(x)=\frac{1}{b-a} 1[a \leq x \leq b]$
- Etc.
- If \boldsymbol{X} is a continuous random vector, we can usually represent it using its joint probability density function:
- Gaussian: if $p_{X}(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}.

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1)$?

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$
- As a sanity check, $\int_{0}^{2} \frac{1}{2}=1$

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$
- As a sanity check, $\int_{0}^{2} \frac{1}{2}=1$
- Let $X=4 Z$, and let p_{X} be its density.

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$
- As a sanity check, $\int_{0}^{2} \frac{1}{2}=1$
- Let $X=4 Z$, and let p_{X} be its density. What is $p_{X}(4)$?

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$
- As a sanity check, $\int_{0}^{2} \frac{1}{2}=1$
- Let $X=4 Z$, and let p_{X} be its density. What is $p_{X}(4)$?
- $p_{X}(4)=p(X=4)$

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$
- As a sanity check, $\int_{0}^{2} \frac{1}{2}=1$
- Let $X=4 Z$, and let p_{X} be its density. What is $p_{X}(4)$?
- $p_{X}(4)=p(X=4)=p(4 Z=4)$

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$
- As a sanity check, $\int_{0}^{2} \frac{1}{2}=1$
- Let $X=4 Z$, and let p_{X} be its density. What is $p_{X}(4)$?
- $p_{X}(4)=p(X=4)=p(4 Z=4)=p(Z=1)$

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$
- As a sanity check, $\int_{0}^{2} \frac{1}{2}=1$
- Let $X=4 Z$, and let p_{X} be its density. What is $p_{X}(4)$?
- $p_{X}(4)=p(X=4)=p(4 Z=4)=p(Z=1)=p_{Z}(1)$

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$
- As a sanity check, $\int_{0}^{2} \frac{1}{2}=1$
- Let $X=4 Z$, and let p_{X} be its density. What is $p_{X}(4)$?
- $p_{X}(4)=p(X=4)=p(4 Z=4)=p(Z=1)=p_{Z}(1)=1 / 2$

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$
- As a sanity check, $\int_{0}^{2} \frac{1}{2}=1$
- Let $X=4 Z$, and let p_{X} be its density. What is $p_{X}(4)$?
- $p_{X}(4)=p(X=4)=p(4 Z=4)=p(Z=1)=p_{Z}(1)=1 / 2$ Wrong!

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$
- As a sanity check, $\int_{0}^{2} \frac{1}{2}=1$
- Let $X=4 Z$, and let p_{X} be its density. What is $p_{X}(4)$?
- $p_{X}(4)=p(X=4)=p(4 Z=4)=p(Z=1)=p_{Z}(1)=1 / 2$ Wrong!
- Clearly, X is uniform in $[0,8]$, so $p_{X}(4)=1 / 8$

Change of Variables formula

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_{Z}. What is $p_{Z}(1) ? \frac{1}{2}$
- As a sanity check, $\int_{0}^{2} \frac{1}{2}=1$
- Let $X=4 Z$, and let p_{X} be its density. What is $p_{X}(4)$?
- $p_{X}(4)=p(X=4)=p(4 Z=4)=p(Z=1)=p_{Z}(1)=1 / 2$ Wrong!
- Clearly, X is uniform in $[0,8]$, so $p_{X}(4)=1 / 8$
- To get correct result, need to use change of variables formula

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Previous example: If $X=f(Z)=4 Z$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(4)$?

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Previous example: If $X=f(Z)=4 Z$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(4)$?
- Note that $h(X)=X / 4$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Previous example: If $X=f(Z)=4 Z$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(4)$?
- Note that $h(X)=X / 4$
- $p_{X}(4)$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Previous example: If $X=f(Z)=4 Z$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(4)$?
- Note that $h(X)=X / 4$
- $p_{X}(4)=p_{Z}(1) h^{\prime}(4)$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Previous example: If $X=f(Z)=4 Z$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(4)$?
- Note that $h(X)=X / 4$
- $p_{X}(4)=p_{Z}(1) h^{\prime}(4)=1 / 2 \times|1 / 4|$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Previous example: If $X=f(Z)=4 Z$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(4)$?
- Note that $h(X)=X / 4$
- $p_{X}(4)=p_{Z}(1) h^{\prime}(4)=1 / 2 \times|1 / 4|=1 / 8$
- More interesting example: If $X=f(Z)=\exp (Z)$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(x)$?

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Previous example: If $X=f(Z)=4 Z$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(4)$?
- Note that $h(X)=X / 4$
- $p_{X}(4)=p_{Z}(1) h^{\prime}(4)=1 / 2 \times|1 / 4|=1 / 8$
- More interesting example: If $X=f(Z)=\exp (Z)$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(x)$?
- Note that $h(X)=\ln (X)$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Previous example: If $X=f(Z)=4 Z$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(4)$?
- Note that $h(X)=X / 4$
- $p_{X}(4)=p_{Z}(1) h^{\prime}(4)=1 / 2 \times|1 / 4|=1 / 8$
- More interesting example: If $X=f(Z)=\exp (Z)$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(x)$?
- Note that $h(X)=\ln (X)$
- $p_{X}(x)$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Previous example: If $X=f(Z)=4 Z$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(4)$?
- Note that $h(X)=X / 4$
- $p_{X}(4)=p_{Z}(1) h^{\prime}(4)=1 / 2 \times|1 / 4|=1 / 8$
- More interesting example: If $X=f(Z)=\exp (Z)$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(x)$?
- Note that $h(X)=\ln (X)$
- $p_{X}(x)=p_{Z}(\ln (x))\left|h^{\prime}(x)\right|$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Previous example: If $X=f(Z)=4 Z$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(4)$?
- Note that $h(X)=X / 4$
- $p_{X}(4)=p_{Z}(1) h^{\prime}(4)=1 / 2 \times|1 / 4|=1 / 8$
- More interesting example: If $X=f(Z)=\exp (Z)$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(x)$?
- Note that $h(X)=\ln (X)$
- $p_{X}(x)=p_{Z}(\ln (x))\left|h^{\prime}(x)\right|=\frac{1}{2 x}$ for $x \in[\exp (0), \exp (2)]$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Previous example: If $X=f(Z)=4 Z$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(4)$?
- Note that $h(X)=X / 4$
- $p_{X}(4)=p_{Z}(1) h^{\prime}(4)=1 / 2 \times|1 / 4|=1 / 8$
- More interesting example: If $X=f(Z)=\exp (Z)$ and $Z \sim \mathcal{U}[0,2]$, what is $p_{X}(x)$?
- Note that $h(X)=\ln (X)$
- $p_{X}(x)=p_{Z}(\ln (x))\left|h^{\prime}(x)\right|=\frac{1}{2 x}$ for $x \in[\exp (0), \exp (2)]$
- Note that the "shape" of $p_{X}(x)$ is different (more complex) from that of the prior $p_{Z}(z)$.

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Proof sketch: Assume $f(\cdot)$ is monotonically increasing

$$
F_{X}(x)=p[X \leq x]
$$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Proof sketch: Assume $f(\cdot)$ is monotonically increasing

$$
F_{X}(x)=p[X \leq x]=p[f(Z) \leq x]
$$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Proof sketch: Assume $f(\cdot)$ is monotonically increasing

$$
F_{X}(x)=p[X \leq x]=p[f(Z) \leq x]=p[Z \leq h(x)]=F_{Z}(h(x))
$$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Proof sketch: Assume $f(\cdot)$ is monotonically increasing

$$
F_{X}(x)=p[X \leq x]=p[f(Z) \leq x]=p[Z \leq h(x)]=F_{Z}(h(x))
$$

Taking derivatives on both sides:

$$
p_{X}(x)=\frac{d F_{X}(x)}{d x}=\frac{d F_{Z}(h(x))}{d x}
$$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Proof sketch: Assume $f(\cdot)$ is monotonically increasing

$$
F_{X}(x)=p[X \leq x]=p[f(Z) \leq x]=p[Z \leq h(x)]=F_{Z}(h(x))
$$

Taking derivatives on both sides:

$$
p_{X}(x)=\frac{d F_{X}(x)}{d x}=\frac{d F_{Z}(h(x))}{d x}=p_{Z}(h(x)) h^{\prime}(x)
$$

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Proof sketch: Assume $f(\cdot)$ is monotonically increasing

$$
F_{X}(x)=p[X \leq x]=p[f(Z) \leq x]=p[Z \leq h(x)]=F_{Z}(h(x))
$$

Taking derivatives on both sides:

$$
p_{X}(x)=\frac{d F_{X}(x)}{d x}=\frac{d F_{Z}(h(x))}{d x}=p_{Z}(h(x)) h^{\prime}(x)
$$

- Recall from basic calculus that $h^{\prime}(x)=\left[f^{-1}\right]^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$.

Change of Variables formula

- Change of variables (1D case): If $X=f(Z)$ and $f(\cdot)$ is monotone with inverse $Z=f^{-1}(X)=h(X)$, then:

$$
p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|
$$

- Proof sketch: Assume $f(\cdot)$ is monotonically increasing

$$
F_{X}(x)=p[X \leq x]=p[f(Z) \leq x]=p[Z \leq h(x)]=F_{Z}(h(x))
$$

Taking derivatives on both sides:

$$
p_{X}(x)=\frac{d F_{X}(x)}{d x}=\frac{d F_{Z}(h(x))}{d x}=p_{Z}(h(x)) h^{\prime}(x)
$$

- Recall from basic calculus that $h^{\prime}(x)=\left[f^{-1}\right]^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$. So letting $z=h(x)=f^{-1}(x)$ we can also write

$$
p_{X}(x)=p_{Z}(z) \frac{1}{f^{\prime}(z)}
$$

Geometry: Determinants and volumes

- Let Z be a uniform random vector in $[0,1]^{n}$

Geometry: Determinants and volumes

- Let Z be a uniform random vector in $[0,1]^{n}$
- Let $X=A Z$ for a square invertible matrix A, with inverse $W=A^{-1}$.

Geometry: Determinants and volumes

- Let Z be a uniform random vector in $[0,1]^{n}$
- Let $X=A Z$ for a square invertible matrix A, with inverse $W=A^{-1}$. How is X distributed?

Geometry: Determinants and volumes

- Let Z be a uniform random vector in $[0,1]^{n}$
- Let $X=A Z$ for a square invertible matrix A, with inverse $W=A^{-1}$. How is X distributed?
- Geometrically, the matrix A maps the unit hypercube $[0,1]^{n}$ to a parallelotope

Geometry: Determinants and volumes

- Let Z be a uniform random vector in $[0,1]^{n}$
- Let $X=A Z$ for a square invertible matrix A, with inverse $W=A^{-1}$. How is X distributed?
- Geometrically, the matrix A maps the unit hypercube $[0,1]^{n}$ to a parallelotope
- Hypercube and parallelotope are generalizations of square/cube and parallelogram/parallelopiped to higher dimensions

Geometry: Determinants and volumes

- Let Z be a uniform random vector in $[0,1]^{n}$
- Let $X=A Z$ for a square invertible matrix A, with inverse $W=A^{-1}$. How is X distributed?
- Geometrically, the matrix A maps the unit hypercube $[0,1]^{n}$ to a parallelotope
- Hypercube and parallelotope are generalizations of square/cube and parallelogram/parallelopiped to higher dimensions

Figure 1: The matrix $A=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ maps a unit square to a parallelogram

Geometry: Determinants and volumes

- The volume of the parallelotope is equal to the absolute value of the determinant of the matrix A

$$
\operatorname{det}(A)=\mathrm{det} \underbrace{a}_{(a+c)(b+d)-a b-2 b c-c d=a d-b c}
$$

Geometry: Determinants and volumes

- The volume of the parallelotope is equal to the absolute value of the determinant of the matrix A

$$
\operatorname{det}(A)=\mathrm{det} \underbrace{a}_{(a+c)(b+d)-a b-2 b c-c d=a d-b c}
$$

Geometry: Determinants and volumes

- The volume of the parallelotope is equal to the absolute value of the determinant of the matrix A

$$
\operatorname{det}(A)=\mathrm{det} \underbrace{a}_{(a+c)}
$$

- Let $X=A Z$ for a square invertible matrix A, with inverse $W=A^{-1} . X$ is uniformly distributed over the parallelotope of area $|\operatorname{det}(A)|$.

Geometry: Determinants and volumes

- The volume of the parallelotope is equal to the absolute value of the determinant of the matrix A

$$
\operatorname{det}(A)=\operatorname{det}\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=a d-b c
$$

$(a+c)(b+d)-a b-2 b c-c d=a d-b c$

- Let $X=A Z$ for a square invertible matrix A, with inverse $W=A^{-1} . X$ is uniformly distributed over the parallelotope of area $|\operatorname{det}(A)|$. Hence, we have

$$
p_{X}(\mathbf{x})=p_{Z}(W \mathbf{x}) /|\operatorname{det}(A)|
$$

Geometry: Determinants and volumes

- The volume of the parallelotope is equal to the absolute value of the determinant of the matrix A

$$
\operatorname{det}(A)=\mathrm{det} \underbrace{a}_{(a+c)(b+d)-a b-2 b c-c d=a d-b c}
$$

- Let $X=A Z$ for a square invertible matrix A, with inverse $W=A^{-1} . X$ is uniformly distributed over the parallelotope of area $|\operatorname{det}(A)|$. Hence, we have

$$
\begin{aligned}
p_{X}(\mathbf{x}) & =p_{Z}(W \mathbf{x}) /|\operatorname{det}(A)| \\
& =p_{Z}(W \mathbf{x})|\operatorname{det}(W)|
\end{aligned}
$$

because if $W=A^{-1}, \operatorname{det}(W)=\frac{1}{\operatorname{det}(A)}$.

Geometry: Determinants and volumes

- The volume of the parallelotope is equal to the absolute value of the determinant of the matrix A

$$
\operatorname{det}(A)=\mathrm{det} \underbrace{a}_{(a+c)(b+d)-a b-2 b c-c d=a d-b c}
$$

- Let $X=A Z$ for a square invertible matrix A, with inverse $W=A^{-1}$. X is uniformly distributed over the parallelotope of area $|\operatorname{det}(A)|$. Hence, we have

$$
\begin{aligned}
p_{X}(\mathbf{x}) & =p_{Z}(W \mathbf{x}) /|\operatorname{det}(A)| \\
& =p_{Z}(W \mathbf{x})|\operatorname{det}(W)|
\end{aligned}
$$

because if $W=A^{-1}, \operatorname{det}(W)=\frac{1}{\operatorname{det}(A)}$. Note similarity with 1D case formula.

Generalized change of variables

- For linear transformations specified via A, change in volume is given by the determinant of A

Generalized change of variables

- For linear transformations specified via A, change in volume is given by the determinant of A
- For non-linear transformations $\mathbf{f}(\cdot)$, the linearized change in volume is given by the determinant of the Jacobian of $\mathbf{f}(\cdot)$.

Generalized change of variables

- For linear transformations specified via A, change in volume is given by the determinant of A
- For non-linear transformations $\mathbf{f}(\cdot)$, the linearized change in volume is given by the determinant of the Jacobian of $\mathbf{f}(\cdot)$.
- Change of variables (General case): The mapping between Z and X, given by $\mathbf{f}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, is invertible such that $X=\mathbf{f}(Z)$ and $Z=\mathbf{f}^{-1}(X)$.

$$
p_{X}(\mathbf{x})=p_{Z}\left(\mathbf{f}^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\partial \mathbf{f}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

Generalized change of variables

- For linear transformations specified via A, change in volume is given by the determinant of A
- For non-linear transformations $\mathbf{f}(\cdot)$, the linearized change in volume is given by the determinant of the Jacobian of $\mathbf{f}(\cdot)$.
- Change of variables (General case): The mapping between Z and X, given by $\mathbf{f}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, is invertible such that $X=\mathbf{f}(Z)$ and $Z=\mathbf{f}^{-1}(X)$.

$$
p_{X}(\mathbf{x})=p_{Z}\left(\mathbf{f}^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\partial \mathbf{f}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

- Note 0: generalizes the previous 1D case $p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|$

Generalized change of variables

- For linear transformations specified via A, change in volume is given by the determinant of A
- For non-linear transformations $\mathbf{f}(\cdot)$, the linearized change in volume is given by the determinant of the Jacobian of $\mathbf{f}(\cdot)$.
- Change of variables (General case): The mapping between Z and X, given by $\mathbf{f}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, is invertible such that $X=\mathbf{f}(Z)$ and $Z=\mathbf{f}^{-1}(X)$.

$$
p_{X}(\mathbf{x})=p_{Z}\left(\mathbf{f}^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\partial \mathbf{f}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

- Note 0: generalizes the previous 1D case $p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|$
- Note 1: unlike VAEs, \mathbf{x}, \mathbf{z} need to be continuous and have the same dimension.

Generalized change of variables

- For linear transformations specified via A, change in volume is given by the determinant of A
- For non-linear transformations $\mathbf{f}(\cdot)$, the linearized change in volume is given by the determinant of the Jacobian of $\mathbf{f}(\cdot)$.
- Change of variables (General case): The mapping between Z and X, given by $\mathbf{f}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, is invertible such that $X=\mathbf{f}(Z)$ and $Z=\mathbf{f}^{-1}(X)$.

$$
p_{X}(\mathbf{x})=p_{Z}\left(\mathbf{f}^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\partial \mathbf{f}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

- Note 0: generalizes the previous 1D case $p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|$
- Note 1: unlike VAEs, \mathbf{x}, \mathbf{z} need to be continuous and have the same dimension. For example, if $\mathbf{x} \in \mathbb{R}^{n}$ then $\mathbf{z} \in \mathbb{R}^{n}$

Generalized change of variables

- For linear transformations specified via A, change in volume is given by the determinant of A
- For non-linear transformations $\mathbf{f}(\cdot)$, the linearized change in volume is given by the determinant of the Jacobian of $\mathbf{f}(\cdot)$.
- Change of variables (General case): The mapping between Z and X, given by $\mathbf{f}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, is invertible such that $X=\mathbf{f}(Z)$ and $Z=\mathbf{f}^{-1}(X)$.

$$
p_{X}(\mathbf{x})=p_{Z}\left(\mathbf{f}^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\partial \mathbf{f}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

- Note 0: generalizes the previous 1D case $p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|$
- Note 1: unlike VAEs, \mathbf{x}, \mathbf{z} need to be continuous and have the same dimension. For example, if $\mathbf{x} \in \mathbb{R}^{n}$ then $\mathbf{z} \in \mathbb{R}^{n}$
- Note 2: For any invertible matrix $A, \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$

Generalized change of variables

- For linear transformations specified via A, change in volume is given by the determinant of A
- For non-linear transformations $\mathbf{f}(\cdot)$, the linearized change in volume is given by the determinant of the Jacobian of $\mathbf{f}(\cdot)$.
- Change of variables (General case): The mapping between Z and X, given by $\mathbf{f}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, is invertible such that $X=\mathbf{f}(Z)$ and $Z=\mathbf{f}^{-1}(X)$.

$$
p_{X}(\mathbf{x})=p_{Z}\left(\mathbf{f}^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\partial \mathbf{f}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

- Note 0: generalizes the previous 1D case $p_{X}(x)=p_{Z}(h(x))\left|h^{\prime}(x)\right|$
- Note 1: unlike VAEs, \mathbf{x}, \mathbf{z} need to be continuous and have the same dimension. For example, if $\mathbf{x} \in \mathbb{R}^{n}$ then $\mathbf{z} \in \mathbb{R}^{n}$
- Note 2: For any invertible matrix $A, \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$

$$
p_{X}(\mathbf{x})=p_{Z}(\mathbf{z})\left|\operatorname{det}\left(\frac{\partial \mathbf{f}(\mathbf{z})}{\partial \mathbf{z}}\right)\right|^{-1}
$$

Two Dimensional Example

- Let Z_{1} and Z_{2} be continuous random variables with joint density $p_{Z_{1}, Z_{2}}$.

Two Dimensional Example

- Let Z_{1} and Z_{2} be continuous random variables with joint density $p_{Z_{1}, Z_{2}}$.
- Let $u=\left(u_{1}, u_{2}\right)$ be a transformation

Two Dimensional Example

- Let Z_{1} and Z_{2} be continuous random variables with joint density $p_{Z_{1}, Z_{2}}$.
- Let $u=\left(u_{1}, u_{2}\right)$ be a transformation
- Let $v=\left(v_{1}, v_{2}\right)$ be the inverse transformation

Two Dimensional Example

- Let Z_{1} and Z_{2} be continuous random variables with joint density $p_{Z_{1}, Z_{2}}$.
- Let $u=\left(u_{1}, u_{2}\right)$ be a transformation
- Let $v=\left(v_{1}, v_{2}\right)$ be the inverse transformation
- Let $X_{1}=u_{1}\left(Z_{1}, Z_{2}\right)$ and $X_{2}=u_{2}\left(Z_{1}, Z_{2}\right)$

Two Dimensional Example

- Let Z_{1} and Z_{2} be continuous random variables with joint density $p_{Z_{1}, Z_{2}}$.
- Let $u=\left(u_{1}, u_{2}\right)$ be a transformation
- Let $v=\left(v_{1}, v_{2}\right)$ be the inverse transformation
- Let $X_{1}=u_{1}\left(Z_{1}, Z_{2}\right)$ and $X_{2}=u_{2}\left(Z_{1}, Z_{2}\right)$ Then, $Z_{1}=v_{1}\left(X_{1}, X_{2}\right)$ and $Z_{2}=v_{2}\left(X_{1}, X_{2}\right)$

Two Dimensional Example

- Let Z_{1} and Z_{2} be continuous random variables with joint density $p_{Z_{1}, Z_{2}}$.
- Let $u=\left(u_{1}, u_{2}\right)$ be a transformation
- Let $v=\left(v_{1}, v_{2}\right)$ be the inverse transformation
- Let $X_{1}=u_{1}\left(Z_{1}, Z_{2}\right)$ and $X_{2}=u_{2}\left(Z_{1}, Z_{2}\right)$ Then, $Z_{1}=v_{1}\left(X_{1}, X_{2}\right)$ and $Z_{2}=v_{2}\left(X_{1}, X_{2}\right)$

$$
p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)
$$

Two Dimensional Example

- Let Z_{1} and Z_{2} be continuous random variables with joint density $p_{Z_{1}, Z_{2}}$.
- Let $u=\left(u_{1}, u_{2}\right)$ be a transformation
- Let $v=\left(v_{1}, v_{2}\right)$ be the inverse transformation
- Let $X_{1}=u_{1}\left(Z_{1}, Z_{2}\right)$ and $X_{2}=u_{2}\left(Z_{1}, Z_{2}\right)$ Then, $Z_{1}=v_{1}\left(X_{1}, X_{2}\right)$ and $Z_{2}=v_{2}\left(X_{1}, X_{2}\right)$

$$
\begin{gathered}
p_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) \\
=p_{Z_{1}, z_{2}}\left(v_{1}\left(x_{1}, x_{2}\right), v_{2}\left(x_{1}, x_{2}\right)\right)\left|\operatorname{det}\left(\begin{array}{ll}
\frac{\partial v_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}} & \frac{\partial v_{1}\left(x_{1}, x_{2}\right)}{\partial x_{2}} \\
\frac{\partial v_{2}\left(x_{1}, x_{2}\right)}{\partial x_{1}} & \frac{\partial v_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}}
\end{array}\right)\right| \text { (inverse) }
\end{gathered}
$$

Two Dimensional Example

- Let Z_{1} and Z_{2} be continuous random variables with joint density $p_{Z_{1}, Z_{2}}$.
- Let $u=\left(u_{1}, u_{2}\right)$ be a transformation
- Let $v=\left(v_{1}, v_{2}\right)$ be the inverse transformation
- Let $X_{1}=u_{1}\left(Z_{1}, Z_{2}\right)$ and $X_{2}=u_{2}\left(Z_{1}, Z_{2}\right)$ Then, $Z_{1}=v_{1}\left(X_{1}, X_{2}\right)$ and $Z_{2}=v_{2}\left(X_{1}, X_{2}\right)$

$$
\begin{gathered}
p_{X_{1}, x_{2}\left(x_{1}, x_{2}\right)} \\
=p_{Z_{1}, z_{2}}\left(v_{1}\left(x_{1}, x_{2}\right), v_{2}\left(x_{1}, x_{2}\right)\right)\left|\operatorname{det}\left(\begin{array}{ll}
\frac{\partial v_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}} & \frac{\partial v_{1}\left(x_{1}, x_{2}\right)}{\partial_{2}} \\
\frac{\partial v_{2}\left(x_{1}, x_{2}\right)}{\partial x_{1}} & \frac{\partial v_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}}
\end{array}\right)\right| \text { (inverse) } \\
=p_{Z_{1}, z_{2}\left(z_{1}, z_{2}\right)\left|\operatorname{det}\left(\begin{array}{ll}
\frac{\partial u_{1}\left(z_{1}, z_{2}\right)}{\partial z_{1}} & \frac{\partial u_{1}\left(z_{1}, z_{2}\right)}{\partial z_{2}} \\
\frac{\partial u_{2}\left(z_{1}, z_{2}\right)}{\partial z_{1}} & \frac{\partial u_{2}\left(z_{1}, z_{2}\right)}{\partial z_{2}}
\end{array}\right)\right|^{-1} \text { (forward) }} .
\end{gathered}
$$

Normalizing flow models

- Consider a directed, latent-variable model over observed variables X and latent variables Z

Normalizing flow models

- Consider a directed, latent-variable model over observed variables X and latent variables Z
- In a normalizing flow model, the mapping between Z and X, given by $\mathbf{f}_{\theta}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, is deterministic and invertible such that $X=\mathbf{f}_{\theta}(Z)$ and $Z=\mathbf{f}_{\theta}^{-1}(X)$

Normalizing flow models

- Consider a directed, latent-variable model over observed variables X and latent variables Z
- In a normalizing flow model, the mapping between Z and X, given by $\mathbf{f}_{\theta}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, is deterministic and invertible such that $X=\mathbf{f}_{\theta}(Z)$ and $Z=\mathbf{f}_{\theta}^{-1}(X)$

- Using change of variables, the marginal likelihood $p(\mathbf{x})$ is given by

$$
p_{X}(\mathbf{x} ; \theta)=p_{Z}\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

Normalizing flow models

- Consider a directed, latent-variable model over observed variables X and latent variables Z
- In a normalizing flow model, the mapping between Z and X, given by $\mathbf{f}_{\theta}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, is deterministic and invertible such that $X=\mathbf{f}_{\theta}(Z)$ and $Z=\mathbf{f}_{\theta}^{-1}(X)$

- Using change of variables, the marginal likelihood $p(\mathbf{x})$ is given by

$$
p_{X}(\mathbf{x} ; \theta)=p_{Z}\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

- Note: \mathbf{x}, \mathbf{z} need to be continuous and have the same dimension.

A Flow of Transformations

Normalizing: Change of variables gives a normalized density after applying an invertible transformation

Flow: Invertible transformations can be composed with each other

$$
\mathbf{z}_{m}=\mathbf{f}_{\theta}^{m} \circ \cdots \circ \mathbf{f}_{\theta}^{1}\left(\mathbf{z}_{0}\right)
$$

A Flow of Transformations

Normalizing: Change of variables gives a normalized density after applying an invertible transformation

Flow: Invertible transformations can be composed with each other

$$
\mathbf{z}_{m}=\mathbf{f}_{\theta}^{m} \circ \cdots \circ \mathbf{f}_{\theta}^{1}\left(\mathbf{z}_{0}\right)=\mathbf{f}_{\theta}^{m}\left(\mathbf{f}_{\theta}^{m-1}\left(\cdots\left(\mathbf{f}_{\theta}^{1}\left(\mathbf{z}_{0}\right)\right)\right)\right)
$$

A Flow of Transformations

Normalizing: Change of variables gives a normalized density after applying an invertible transformation

Flow: Invertible transformations can be composed with each other

$$
\mathbf{z}_{m}=\mathbf{f}_{\theta}^{m} \circ \cdots \circ \mathbf{f}_{\theta}^{1}\left(\mathbf{z}_{0}\right)=\mathbf{f}_{\theta}^{m}\left(\mathbf{f}_{\theta}^{m-1}\left(\cdots\left(\mathbf{f}_{\theta}^{1}\left(\mathbf{z}_{0}\right)\right)\right)\right) \triangleq \mathbf{f}_{\theta}\left(\mathbf{z}_{0}\right)
$$

A Flow of Transformations

Normalizing: Change of variables gives a normalized density after applying an invertible transformation

Flow: Invertible transformations can be composed with each other

$$
\mathbf{z}_{m}=\mathbf{f}_{\theta}^{m} \circ \cdots \circ \mathbf{f}_{\theta}^{1}\left(\mathbf{z}_{0}\right)=\mathbf{f}_{\theta}^{m}\left(\mathbf{f}_{\theta}^{m-1}\left(\cdots\left(\mathbf{f}_{\theta}^{1}\left(\mathbf{z}_{0}\right)\right)\right)\right) \triangleq \mathbf{f}_{\theta}\left(\mathbf{z}_{0}\right)
$$

- Start with a simple distribution for \mathbf{z}_{0} (e.g., Gaussian)

A Flow of Transformations

Normalizing: Change of variables gives a normalized density after applying an invertible transformation

Flow: Invertible transformations can be composed with each other

$$
\mathbf{z}_{m}=\mathbf{f}_{\theta}^{m} \circ \cdots \circ \mathbf{f}_{\theta}^{1}\left(\mathbf{z}_{0}\right)=\mathbf{f}_{\theta}^{m}\left(\mathbf{f}_{\theta}^{m-1}\left(\cdots\left(\mathbf{f}_{\theta}^{1}\left(\mathbf{z}_{0}\right)\right)\right)\right) \triangleq \mathbf{f}_{\theta}\left(\mathbf{z}_{0}\right)
$$

- Start with a simple distribution for \mathbf{z}_{0} (e.g., Gaussian)
- Apply a sequence of M invertible transformations to finally obtain $\mathbf{x}=\mathbf{z}_{M}$
- By change of variables

A Flow of Transformations

Normalizing: Change of variables gives a normalized density after applying an invertible transformation

Flow: Invertible transformations can be composed with each other

$$
\mathbf{z}_{m}=\mathbf{f}_{\theta}^{m} \circ \cdots \circ \mathbf{f}_{\theta}^{1}\left(\mathbf{z}_{0}\right)=\mathbf{f}_{\theta}^{m}\left(\mathbf{f}_{\theta}^{m-1}\left(\cdots\left(\mathbf{f}_{\theta}^{1}\left(\mathbf{z}_{0}\right)\right)\right)\right) \triangleq \mathbf{f}_{\theta}\left(\mathbf{z}_{0}\right)
$$

- Start with a simple distribution for \mathbf{z}_{0} (e.g., Gaussian)
- Apply a sequence of M invertible transformations to finally obtain $\mathbf{x}=\mathbf{z}_{M}$
- By change of variables

$$
p_{X}(\mathbf{x} ; \theta)=p_{Z}\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \prod_{m=1}^{M}\left|\operatorname{det}\left(\frac{\partial\left(\mathbf{f}_{\theta}^{m}\right)^{-1}\left(\mathbf{z}_{m}\right)}{\partial \mathbf{z}_{m}}\right)\right|
$$

(Note: determininant of product equals product of determinants)

Planar flows (Rezende \& Mohamed, 2016)

- Base distribution: Gaussian

Planar flows (Rezende \& Mohamed, 2016)

- Base distribution: Gaussian

- Base distribution: Uniform

Uniform

Planar flows (Rezende \& Mohamed, 2016)

- Base distribution: Gaussian

- Base distribution: Uniform

- 10 planar transformations can transform simple distributions into a more complex one

Learning and Inference

- Learning via maximum likelihood over the dataset \mathcal{D}

$$
\max _{\theta} \log p_{X}(\mathcal{D} ; \theta)=\sum_{\mathbf{x} \in \mathcal{D}} \log p_{Z}\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right)+\log \left|\operatorname{det}\left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

Learning and Inference

- Learning via maximum likelihood over the dataset \mathcal{D}

$$
\max _{\theta} \log p_{X}(\mathcal{D} ; \theta)=\sum_{\mathbf{x} \in \mathcal{D}} \log p_{Z}\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right)+\log \left|\operatorname{det}\left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

- Exact likelihood evaluation via inverse tranformation $\mathbf{x} \mapsto \mathbf{z}$ and change of variables formula

Learning and Inference

- Learning via maximum likelihood over the dataset \mathcal{D}

$$
\max _{\theta} \log p_{X}(\mathcal{D} ; \theta)=\sum_{\mathbf{x} \in \mathcal{D}} \log p_{Z}\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right)+\log \left|\operatorname{det}\left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

- Exact likelihood evaluation via inverse tranformation $\mathbf{x} \mapsto \mathbf{z}$ and change of variables formula
- Sampling via forward transformation $\mathbf{z} \mapsto \mathbf{x}$

$$
\mathbf{z} \sim p_{Z}(\mathbf{z}) \quad \mathbf{x}=\mathbf{f}_{\theta}(\mathbf{z})
$$

Learning and Inference

- Learning via maximum likelihood over the dataset \mathcal{D}

$$
\max _{\theta} \log p_{X}(\mathcal{D} ; \theta)=\sum_{\mathbf{x} \in \mathcal{D}} \log p_{Z}\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right)+\log \left|\operatorname{det}\left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|
$$

- Exact likelihood evaluation via inverse tranformation $\mathbf{x} \mapsto \mathbf{z}$ and change of variables formula
- Sampling via forward transformation $\mathbf{z} \mapsto \mathbf{x}$

$$
\mathbf{z} \sim p_{Z}(\mathbf{z}) \quad \mathbf{x}=\mathbf{f}_{\theta}(\mathbf{z})
$$

- Latent representations inferred via inverse transformation (no inference network required!)

$$
\mathbf{z}=\mathbf{f}_{\theta}^{-1}(\mathbf{x})
$$

Desiderata for flow models

- Simple prior $p_{Z}(\mathbf{z})$ that allows for efficient sampling and tractable likelihood evaluation. E.g., isotropic Gaussian

Desiderata for flow models

- Simple prior $p_{Z}(\mathbf{z})$ that allows for efficient sampling and tractable likelihood evaluation. E.g., isotropic Gaussian
- Invertible transformations with tractable evaluation:

Desiderata for flow models

- Simple prior $p_{Z}(\mathbf{z})$ that allows for efficient sampling and tractable likelihood evaluation. E.g., isotropic Gaussian
- Invertible transformations with tractable evaluation:
- Likelihood evaluation requires efficient evaluation of $\mathbf{x} \mapsto \mathbf{z}$ mapping

Desiderata for flow models

- Simple prior $p_{Z}(\mathbf{z})$ that allows for efficient sampling and tractable likelihood evaluation. E.g., isotropic Gaussian
- Invertible transformations with tractable evaluation:
- Likelihood evaluation requires efficient evaluation of $\mathbf{x} \mapsto \mathbf{z}$ mapping
- Sampling requires efficient evaluation of $\mathbf{z} \mapsto \mathbf{x}$ mapping

Desiderata for flow models

- Simple prior $p_{Z}(\mathbf{z})$ that allows for efficient sampling and tractable likelihood evaluation. E.g., isotropic Gaussian
- Invertible transformations with tractable evaluation:
- Likelihood evaluation requires efficient evaluation of $\mathbf{x} \mapsto \mathbf{z}$ mapping
- Sampling requires efficient evaluation of $\mathbf{z} \mapsto \mathbf{x}$ mapping
- Computing likelihoods also requires the evaluation of determinants of $n \times n$ Jacobian matrices, where n is the data dimensionality

Desiderata for flow models

- Simple prior $p_{Z}(\mathbf{z})$ that allows for efficient sampling and tractable likelihood evaluation. E.g., isotropic Gaussian
- Invertible transformations with tractable evaluation:
- Likelihood evaluation requires efficient evaluation of $\mathbf{x} \mapsto \mathbf{z}$ mapping
- Sampling requires efficient evaluation of $\mathbf{z} \mapsto \mathbf{x}$ mapping
- Computing likelihoods also requires the evaluation of determinants of $n \times n$ Jacobian matrices, where n is the data dimensionality
- Computing the determinant for an $n \times n$ matrix is $O\left(n^{3}\right)$: prohibitively expensive within a learning loop!

Desiderata for flow models

- Simple prior $p_{Z}(\mathbf{z})$ that allows for efficient sampling and tractable likelihood evaluation. E.g., isotropic Gaussian
- Invertible transformations with tractable evaluation:
- Likelihood evaluation requires efficient evaluation of $\mathbf{x} \mapsto \mathbf{z}$ mapping
- Sampling requires efficient evaluation of $\mathbf{z} \mapsto \mathbf{x}$ mapping
- Computing likelihoods also requires the evaluation of determinants of $n \times n$ Jacobian matrices, where n is the data dimensionality
- Computing the determinant for an $n \times n$ matrix is $O\left(n^{3}\right)$: prohibitively expensive within a learning loop!
- Key idea: Choose tranformations so that the resulting Jacobian matrix has special structure.

Desiderata for flow models

- Simple prior $p_{Z}(\mathbf{z})$ that allows for efficient sampling and tractable likelihood evaluation. E.g., isotropic Gaussian
- Invertible transformations with tractable evaluation:
- Likelihood evaluation requires efficient evaluation of $\mathbf{x} \mapsto \mathbf{z}$ mapping
- Sampling requires efficient evaluation of $\mathbf{z} \mapsto \mathbf{x}$ mapping
- Computing likelihoods also requires the evaluation of determinants of $n \times n$ Jacobian matrices, where n is the data dimensionality
- Computing the determinant for an $n \times n$ matrix is $O\left(n^{3}\right)$: prohibitively expensive within a learning loop!
- Key idea: Choose tranformations so that the resulting Jacobian matrix has special structure. For example, the determinant of a triangular matrix is the product of the diagonal entries, i.e., an $O(n)$ operation

Triangular Jacobian

$$
\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)=\mathbf{f}(\mathbf{z})=\left(f_{1}(\mathbf{z}), \cdots, f_{n}(\mathbf{z})\right)
$$

Triangular Jacobian

$$
\begin{gathered}
\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)=\mathbf{f}(\mathbf{z})=\left(f_{1}(\mathbf{z}), \cdots, f_{n}(\mathbf{z})\right) \\
J=\frac{\partial \mathbf{f}}{\partial \mathbf{z}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial z_{1}} & \cdots & \frac{\partial f_{1}}{\partial z_{n}} \\
\cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial z_{1}} & \cdots & \frac{\partial f_{n}}{\partial z_{n}}
\end{array}\right)
\end{gathered}
$$

Triangular Jacobian

$$
\begin{gathered}
\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)=\mathbf{f}(\mathbf{z})=\left(f_{1}(\mathbf{z}), \cdots, f_{n}(\mathbf{z})\right) \\
J=\frac{\partial \mathbf{f}}{\partial \mathbf{z}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial 1_{1}} & \cdots & \frac{\partial f_{1}}{\partial z_{n}} \\
\cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial z_{1}} & \cdots & \frac{\partial f_{n}}{\partial z_{n}}
\end{array}\right)
\end{gathered}
$$

Suppose $x_{i}=f_{i}(\mathbf{z})$ only depends on $\mathbf{z}_{\leq i}$. Then

$$
J=\frac{\partial \mathbf{f}}{\partial \mathbf{z}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial z_{1}} & \cdots & 0 \\
\cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial z_{1}} & \cdots & \frac{\partial f_{n}}{\partial z_{n}}
\end{array}\right)
$$

has lower triangular structure.

Triangular Jacobian

$$
\begin{gathered}
\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)=\mathbf{f}(\mathbf{z})=\left(f_{1}(\mathbf{z}), \cdots, f_{n}(\mathbf{z})\right) \\
J=\frac{\partial \mathbf{f}}{\partial \mathbf{z}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial z_{1}} & \cdots & \frac{\partial f_{1}}{\partial n_{n}} \\
\cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial z_{1}} & \cdots & \frac{\partial f_{n}}{\partial z_{n}}
\end{array}\right)
\end{gathered}
$$

Suppose $x_{i}=f_{i}(\mathbf{z})$ only depends on $\mathbf{z}_{\leq i}$. Then

$$
J=\frac{\partial \mathbf{f}}{\partial \mathbf{z}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial z_{1}} & \cdots & 0 \\
\cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial z_{1}} & \cdots & \frac{\partial f_{n}}{\partial z_{n}}
\end{array}\right)
$$

has lower triangular structure. Determinant can be computed in linear time.

Triangular Jacobian

$$
\begin{gathered}
\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)=\mathbf{f}(\mathbf{z})=\left(f_{1}(\mathbf{z}), \cdots, f_{n}(\mathbf{z})\right) \\
J=\frac{\partial \mathbf{f}}{\partial \mathbf{z}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial z_{1}} & \cdots & \frac{\partial f_{1}}{\partial n_{n}} \\
\cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial z_{1}} & \cdots & \frac{\partial f_{n}}{\partial z_{n}}
\end{array}\right)
\end{gathered}
$$

Suppose $x_{i}=f_{i}(\mathbf{z})$ only depends on $\mathbf{z}_{\leq i}$. Then

$$
J=\frac{\partial \mathbf{f}}{\partial \mathbf{z}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial z_{1}} & \cdots & 0 \\
\cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial z_{1}} & \cdots & \frac{\partial f_{n}}{\partial z_{n}}
\end{array}\right)
$$

has lower triangular structure. Determinant can be computed in linear time. Similarly, the Jacobian is upper triangular if x_{i} only depends on $\mathbf{z}_{\geq i}$

Planar flows (Rezende \& Mohamed, 2016)

- Base distribution: Gaussian

Planar flows (Rezende \& Mohamed, 2016)

- Base distribution: Gaussian

- Base distribution: Uniform

Uniform

Planar flows (Rezende \& Mohamed, 2016)

- Base distribution: Gaussian

- Base distribution: Uniform

- 10 planar transformations can transform simple distributions into a more complex one

Planar flows (Rezende \& Mohamed, 2016)

- Planar flow. Invertible transformation

$$
\mathbf{x}=\mathbf{f}_{\theta}(\mathbf{z})=\mathbf{z}+\mathbf{u} h\left(\mathbf{w}^{T} \mathbf{z}+b\right)
$$

parameterized by $\theta=(\mathbf{w}, \mathbf{u}, b)$ where $h(\cdot)$ is a non-linearity

Planar flows (Rezende \& Mohamed, 2016)

- Planar flow. Invertible transformation

$$
\mathbf{x}=\mathbf{f}_{\theta}(\mathbf{z})=\mathbf{z}+\mathbf{u} h\left(\mathbf{w}^{T} \mathbf{z}+b\right)
$$

parameterized by $\theta=(\mathbf{w}, \mathbf{u}, b)$ where $h(\cdot)$ is a non-linearity

- Absolute value of the determinant of the Jacobian is given by

$$
\left|\operatorname{det} \frac{\partial \mathbf{f}_{\theta}(\mathbf{z})}{\partial \mathbf{z}}\right|=\left|\operatorname{det}\left(I+h^{\prime}\left(\mathbf{w}^{T} \mathbf{z}+b\right) \mathbf{u} \mathbf{w}^{T}\right)\right|
$$

Planar flows (Rezende \& Mohamed, 2016)

- Planar flow. Invertible transformation

$$
\mathbf{x}=\mathbf{f}_{\theta}(\mathbf{z})=\mathbf{z}+\mathbf{u} h\left(\mathbf{w}^{T} \mathbf{z}+b\right)
$$

parameterized by $\theta=(\mathbf{w}, \mathbf{u}, b)$ where $h(\cdot)$ is a non-linearity

- Absolute value of the determinant of the Jacobian is given by

$$
\begin{array}{r}
\left|\operatorname{det} \frac{\partial \mathbf{f}_{\theta}(\mathbf{z})}{\partial \mathbf{z}}\right|=\mid \\
\left|\operatorname{det}\left(I+h^{\prime}\left(\mathbf{w}^{T} \mathbf{z}+b\right) \mathbf{u} \mathbf{w}^{T}\right)\right| \\
=\left|1+h^{\prime}\left(\mathbf{w}^{T} \mathbf{z}+b\right) \mathbf{u}^{T} \mathbf{w}\right| \\
\\
(\text { matrix determinant lemma) }
\end{array}
$$

Planar flows (Rezende \& Mohamed, 2016)

- Planar flow. Invertible transformation

$$
\mathbf{x}=\mathbf{f}_{\theta}(\mathbf{z})=\mathbf{z}+\mathbf{u} h\left(\mathbf{w}^{T} \mathbf{z}+b\right)
$$

parameterized by $\theta=(\mathbf{w}, \mathbf{u}, b)$ where $h(\cdot)$ is a non-linearity

- Absolute value of the determinant of the Jacobian is given by

$$
\begin{array}{r}
\left|\operatorname{det} \frac{\partial \mathbf{f}_{\theta}(\mathbf{z})}{\partial \mathbf{z}}\right|=\mid \\
\left|\operatorname{det}\left(I+h^{\prime}\left(\mathbf{w}^{T} \mathbf{z}+b\right) \mathbf{u} \mathbf{w}^{T}\right)\right| \\
=\left|1+h^{\prime}\left(\mathbf{w}^{T} \mathbf{z}+b\right) \mathbf{u}^{T} \mathbf{w}\right| \\
\\
(\text { matrix determinant lemma) }
\end{array}
$$

- Need to restrict parameters and non-linearity for the mapping to be invertible.

Planar flows (Rezende \& Mohamed, 2016)

- Planar flow. Invertible transformation

$$
\mathbf{x}=\mathbf{f}_{\theta}(\mathbf{z})=\mathbf{z}+\mathbf{u} h\left(\mathbf{w}^{T} \mathbf{z}+b\right)
$$

parameterized by $\theta=(\mathbf{w}, \mathbf{u}, b)$ where $h(\cdot)$ is a non-linearity

- Absolute value of the determinant of the Jacobian is given by

$$
\begin{array}{r}
\left|\operatorname{det} \frac{\partial \mathbf{f}_{\theta}(\mathbf{z})}{\partial \mathbf{z}}\right|=\left|\operatorname{det}\left(I+h^{\prime}\left(\mathbf{w}^{T} \mathbf{z}+b\right) \mathbf{u} \mathbf{w}^{T}\right)\right| \\
=\left|1+h^{\prime}\left(\mathbf{w}^{T} \mathbf{z}+b\right) \mathbf{u}^{T} \mathbf{w}\right|
\end{array}
$$

(matrix determinant lemma)

- Need to restrict parameters and non-linearity for the mapping to be invertible. For example, $h=\tanh ()$ and $h^{\prime}\left(\mathbf{w}^{T} \mathbf{z}+b\right) \mathbf{u}^{T} \mathbf{w} \geq-1$

Next lecture: More invertible transformations for high dimensions!

