
Deep Generative Models

Lecture 8: Normalizing Flows

Aditya Grover

UCLA

1 / 23



Recap of normalizing flow models

So far

• Transform simple to complex distributions via sequence of

invertible transformations

• Directed latent variable models with marginal likelihood given

by the change of variables formula

• Triangular Jacobian permits efficient evaluation of

log-likelihoods

Plan for today

• Invertible transformations with diagonal Jacobians (NICE,

Real-NVP)

• Autoregressive Models as Normalizing Flow Models

• Case Study: Probability density distillation for efficient

learning and inference in Parallel Wavenet

2 / 23



Designing invertible transformations

• NICE or Nonlinear Independent Components Estimation (Dinh

et al., 2014) composes two kinds of invertible transformations:

additive coupling layers and rescaling layers

• Real-NVP (Dinh et al., 2017)

• Inverse Autoregressive Flow (Kingma et al., 2016)

• Masked Autoregressive Flow (Papamakarios et al., 2017)

• I-resnet (Behrmann et al, 2018)

• Glow (Kingma et al, 2018)

• MintNet (Song et al., 2019)

• And many more

3 / 23



NICE - Additive coupling layers

Partition the variables z into two disjoint subsets, say z1:d and

zd+1:n for any 1 ≤ d < n

• Forward mapping z 7→ x:
• x1:d = z1:d (identity transformation)

• xd+1:n = zd+1:n + mθ(z1:d) (mθ(·) is a neural network with

parameters θ, d input units, and n − d output units)

• Inverse mapping x 7→ z:
• z1:d = x1:d (identity transformation)

• zd+1:n = xd+1:n −mθ(x1:d)

• Jacobian of forward mapping:

J =
∂x

∂z
=

(
Id 0

∂xd+1:n

∂z1:d
In−d

)

det(J) = 1

• Volume preserving transformation since determinant is 1.
4 / 23



NICE - Rescaling layers

• Additive coupling layers are composed together (with arbitrary

partitions of variables in each layer)

• Final layer of NICE applies a rescaling transformation

• Forward mapping z 7→ x:

xi = sizi

where si > 0 is the scaling factor for the i-th dimension.

• Inverse mapping x 7→ z:

zi =
xi
si

• Jacobian of forward mapping:

J = diag(s)

det(J) =
n∏

i=1

si

5 / 23



Samples generated via NICE

6 / 23



Samples generated via NICE

7 / 23



Real-NVP: Non-volume preserving extension of NICE

• Forward mapping z 7→ x:

• x1:d = z1:d (identity transformation)

• xd+1:n = zd+1:n � exp(αθ(z1:d)) + µθ(z1:d)

• µθ(·) and αθ(·) are neural networks with parameters θ, d input

units, and n − d output units [� denotes elementwise product]

• Inverse mapping x 7→ z:

• z1:d = x1:d (identity transformation)

• zd+1:n = (xd+1:n − µθ(x1:d))� (exp(−αθ(x1:d)))

• Jacobian of forward mapping:

J =
∂x

∂z
=

(
Id 0

∂xd+1:n

∂z1:d
diag(exp(αθ(z1:d)))

)

det(J) =
n∏

i=d+1

exp(αθ(z1:d)i ) = exp

(
n∑

i=d+1

αθ(z1:d)i

)

• Non-volume preserving transformation in general since

determinant can be less than or greater than 1
8 / 23



Samples generated via Real-NVP

9 / 23



Latent space interpolations via Real-NVP

Using with four validation examples z(1), z(2), z(3), z(4), define

interpolated z as:

z = cosφ(z(1)cosφ′ + z(2)sinφ′) + sinφ(z(3)cosφ′ + z(4)sinφ′)

with manifold parameterized by φ and φ′.

10 / 23



Continuous Autoregressive models as flow models

• Consider a Gaussian autoregressive model:

p(x) =
n∏

i=1

p(xi |x<i )

such that
p(xi | x<i ) = N (µi (x1, · · · , xi−1), exp(αi (x1, · · · , xi−1))2).

Here, µi (·) and αi (·) are neural networks for i > 1 and

constants for i = 1.
• Sampler for this model:

• Sample zi ∼ N (0, 1) for i = 1, · · · , n
• Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1)

• Let x2 = exp(α2)z2 + µ2. Compute µ3(x1, x2), α3(x1, x2)

• Let x3 = exp(α3)z3 + µ3. ...

• Flow interpretation: transforms samples from the standard

Gaussian (z1, z2, . . . , zn) to those generated from the model

(x1, x2, . . . , xn) via invertible transformations (parameterized

by µi (·), αi (·)) 11 / 23



Masked Autoregressive Flow (MAF)

• Forward mapping from z 7→ x:

• Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1)

• Let x2 = exp(α2)z2 + µ2. Compute µ3(x1, x2), α3(x1, x2)

• Sampling is sequential and slow (like autoregressive): O(n)

time

Figure adapted from Eric Jang’s blog

12 / 23



Masked Autoregressive Flow (MAF)

• Inverse mapping from x 7→ z:
• Compute all µi , αi (can be done in parallel using e.g., MADE)

• Let z1 = (x1 − µ1)/ exp(α1) (scale and shift)

• Let z2 = (x2 − µ2)/ exp(α2)

• Let z3 = (x3 − µ3)/ exp(α3) ...

• Jacobian is lower diagonal, hence efficient determinant

computation

• Likelihood evaluation is easy and parallelizable (like MADE)

• Layers with different variable orderings can be stacked

Figure adapted from Eric Jang’s blog

13 / 23



Inverse Autoregressive Flow (IAF)

• Forward mapping from z 7→ x (parallel):

• Sample zi ∼ N (0, 1) for i = 1, · · · , n
• Compute all µi , αi (can be done in parallel)

• Let x1 = exp(α1)z1 + µ1

• Let x2 = exp(α2)z2 + µ2 ...
• Inverse mapping from x 7→ z (sequential):

• Let z1 = (x1 − µ1)/ exp(α1). Compute µ2(z1), α2(z1)

• Let z2 = (x2 − µ2)/ exp(α2). Compute µ3(z1, z2), α3(z1, z2)
• Fast to sample from, slow to evaluate model likelihoods (train)

• Note: Fast to evaluate likelihoods of a generated point (cache

z1, z2, . . . , zn)

Figure adapted from Eric Jang’s blog

14 / 23



IAF is inverse of MAF

Figure 1: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

• Interchanging z and x in the inverse transformation of MAF

gives the forward transformation of IAF

• Similarly, forward transformation of MAF is inverse

transformation of IAF
Figure adapted from Eric Jang’s blog

15 / 23



IAF vs. MAF

• Computational tradeoffs

• MAF: Fast likelihood evaluation, slow sampling

• IAF: Fast sampling, slow likelihood evaluation

• MAF more suited for training based on MLE, density

estimation

• IAF more suited for real-time generation

• Can we get the best of both worlds?

16 / 23



Parallel Wavenet

• Two part training with a teacher and student model

• Teacher is parameterized by MAF. Teacher can be efficiently

trained via MLE

• Once teacher is trained, initialize a student model

parameterized by IAF. Student model cannot efficiently

evaluate density for external datapoints but allows for efficient

sampling

• Key observation: IAF can also efficiently evaluate densities

of its own generations (via caching the noise variates

z1, z2, . . . , zn)

17 / 23



Parallel Wavenet

• Probability density distillation: Student distribution is

trained to minimize the KL divergence between student (s)

and teacher (t)

DKL(s, t) = Ex∼s [log s(x)− log t(x)]

• Evaluating and optimizing Monte Carlo estimates of this
objective requires:

• Samples x from student model (IAF)

• Density of x assigned by student model

• Density of x assigned by teacher model (MAF)

• All operations above can be implemented efficiently

18 / 23



Parallel Wavenet: Overall algorithm

• Training

• Step 1: Train teacher model (MAF) via MLE

• Step 2: Train student model (IAF) to minimize KL divergence

with teacher

• Test-time: Use student model for testing

• Improves sampling efficiency over original Wavenet (vanilla

autoregressive model) by 1000x!

19 / 23



MintNet (Song et al., 2019)

• MintNet: Building invertible neural networks with masked

convolutions.

• A regular convolutional neural network is powerful, but it is

not invertible and its Jacobian determinant is expensive.

• We can instead use masked convolutions like in autoregressive

models to enforce ordering (like PixelCNN)

• Because of the ordering, the Jacobian matrix is triangular and

the determinant is efficient to compute.

• If all the diagonal elements of the Jacobian matrix are

(strictly) positive, the transformation is invertible.

20 / 23



MintNet (Song et al., 2019)

• Illustration of a masked convolution with 3 filters and kernel

size 3× 3.

• Solid checkerboard cubes inside each filter represent

unmasked weights, while the transparent blue blocks represent

the weights that have been masked out.

• The receptive field of each filter on the input feature maps is

indicated by regions shaded with the pattern (the colored

square) below the corresponding filter.

21 / 23



MintNet (Song et al., 2019)

• Uncurated samples on MNIST, CIFAR-10, and ImageNet 3232

datasets

22 / 23



Summary of Normalizing Flow Models

• Transform simple distributions into more complex distributions

via change of variables

• Jacobian of transformations should have tractable

determinant for efficient learning and density estimation

• Computational tradeoffs in evaluating forward and inverse

transformations

23 / 23


