# **Deep Generative Models**

Lecture 5: Latent Variable Models

Aditya Grover

UCLA

- 1. Autoregressive models:
  - Chain rule based factorization is fully general
  - Compact representation via *conditional independence* and/or *neural parameterizations*
- 2. Pros:
  - Easy to evaluate likelihoods
  - Easy to train
- 3. Cons:
  - Requires an ordering
  - Generation is sequential
  - Cannot learn features in an unsupervised way

- 1. Latent Variable Models
  - Mixture models
  - Variational autoencoder
  - Variational inference and learning

### Latent Variable Models: Motivation



- Lots of variability in images x due to gender, eye color, hair color, pose, etc. However, unless images are annotated, these factors of variation are not explicitly available (latent).
- 2. Idea: explicitly model these factors using latent variables z

#### Latent Variable Models: Motivation



- 1. Only shaded variables x are observed in the data (pixel values)
- 2. Latent variables z correspond to high level features
  - If z chosen properly,  $p(\mathbf{x}|\mathbf{z})$  could be much simpler than  $p(\mathbf{x})$
  - If we had trained this model, then we could identify features via p(z | x), e.g., p(EyeColor = Blue|x)
- 3. Challenge: Very difficult to specify these conditionals by hand

#### **Deep Latent Variable Models**



- Use neural networks to model the conditionals (deep latent variable models):
  - 1.  $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, I)$

2.  $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$  where  $\mu_{\theta}, \Sigma_{\theta}$  are neural networks

- *Hope* that after training, **z** will correspond to meaningful latent factors of variation (*features*). Unsupervised representation learning.
- As before, features can be computed via  $p(\mathbf{z} \mid \mathbf{x})$

# Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians. Bayes net:  $\mathbf{z} \rightarrow \mathbf{x}$ .



Generative process

- 1. Pick a mixture component k by sampling z
- 2. Generate a data point by sampling from that Gaussian

Mixture of Gaussians:



- Clustering: The posterior p(z | x) identifies the mixture component
- **Unsupervised learning:** We are hoping to learn from unlabeled data (ill-posed problem)

# Unsupervised learning



#### **Unsupervised** learning



Shown is the posterior probability that a data point was generated by the *i*-th mixture component, P(z = i|x)

# **Unsupervised** learning



Unsupervised clustering of handwritten digits.

#### Alternative motivation: Combine simple models into a more

complex and expressive one



$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{z} = k) \underbrace{\mathcal{N}(\mathbf{x}; \mu_k, \Sigma_k)}_{\text{component}}$$

#### Variational Autoencoder

complex/flexible



A mixture of an infinite number of Gaussians:

1. 
$$\mathbf{z} \sim \mathcal{N}(0, I)$$
  
2.  $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$  where  $\mu_{\theta}, \Sigma_{\theta}$  are neural networks  
•  $\mu_{\theta}(\mathbf{z}) = \sigma(A\mathbf{z}+c) = (\sigma(a_1\mathbf{z}+c_1), \sigma(a_2\mathbf{z}+c_2)) = (\mu_1(\mathbf{z}), \mu_2(\mathbf{z}))$   
•  $\Sigma_{\theta}(\mathbf{z}) = diag(\exp(\sigma(B\mathbf{z}+d))) = \begin{pmatrix} \exp(\sigma(b_1\mathbf{z}+d_1)) & 0 \\ 0 & \exp(\sigma(b_2\mathbf{z}+d_2)) \end{pmatrix}$   
•  $\theta = (A, B, c, d)$   
3. Even though  $p(\mathbf{x} \mid \mathbf{z})$  is simple, the marginal  $p(\mathbf{x})$  is very

13 / 28

- Latent Variable Models
  - Allow us to define complex models p(x) in terms of simpler building blocks p(x | z)
  - Natural for unsupervised learning tasks (clustering, unsupervised representation learning, etc.)
  - No free lunch: much more difficult to learn compared to fully observed, autoregressive models

## **Marginal Likelihood**



- Suppose some pixel values are missing at train time (e.g., top half)
- Let X denote observed random variables, and Z the unobserved ones (also called hidden or latent)
- Suppose we have a model for the joint distribution (e.g., PixelCNN)

 $p(\mathbf{X}, \mathbf{Z}; \theta)$ 

What is the probability  $p(\mathbf{X} = \bar{\mathbf{x}}; \theta)$  of observing a training data point  $\bar{\mathbf{x}}$ ?

$$\sum_{\mathbf{z}} p(\mathbf{X} = \bar{\mathbf{x}}, \mathbf{Z} = \mathbf{z}; \theta) = \sum_{\mathbf{z}} p(\bar{\mathbf{x}}, \mathbf{z}; \theta)$$

 Need to consider all possible ways to complete the image (fill green part) 15/28

#### Variational Autoencoder Marginal Likelihood



A mixture of an infinite number of Gaussians:

1. 
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, I)$$

2.  $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$  where  $\mu_{\theta}, \Sigma_{\theta}$  are neural networks

- 3. Z are unobserved at train time (also called hidden or latent)
- 4. Suppose we have a model for the joint distribution. What is the probability p(X = x̄; θ) of observing a training data point x̄?

$$\int_{\mathbf{z}} p(\mathbf{X} = \bar{\mathbf{x}}, \mathbf{Z} = \mathbf{z}; \theta) d\mathbf{z} = \int_{\mathbf{z}} p(\bar{\mathbf{x}}, \mathbf{z}; \theta) d\mathbf{z}$$
16/28

#### Partially observed data

• Suppose that our joint distribution is

$$p(\mathbf{X}, \mathbf{Z}; \theta)$$

- We have a dataset D, where for each datapoint the X variables are observed (e.g., pixel values) and the variables Z are never observed (e.g., cluster or class id.). D = {x<sup>(1)</sup>, ..., x<sup>(M)</sup>}.
- Maximum likelihood learning:

 $\log \prod_{\mathbf{x} \in \mathcal{D}} p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)$ • Evaluating  $\log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)$  can be intractable. Suppose we have 30 binary latent features,  $\mathbf{z} \in \{0, 1\}^{30}$ . Evaluating  $\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)$  involves a sum with  $2^{30}$  terms. For continuous variables,  $\log \int_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta) d\mathbf{z}$  is often intractable. Gradients  $\nabla_{\theta}$  also hard to compute.

 Need approximations. One gradient evaluation per training data point x ∈ D, so approximation needs to be cheap.

#### First attempt: Naive Monte Carlo

Likelihood function  $p_{\theta}(\mathbf{x})$  for Partially Observed Data is hard to compute:

$$p_{\theta}(\mathbf{x}) = \sum_{\text{All values of } \mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z}) = |\mathcal{Z}| \sum_{\mathbf{z} \in \mathcal{Z}} \frac{1}{|\mathcal{Z}|} p_{\theta}(\mathbf{x}, \mathbf{z}) = |\mathcal{Z}| \mathbb{E}_{\mathbf{z} \sim \textit{Uniform}(\mathcal{Z})} \left[ p_{\theta}(\mathbf{x}, \mathbf{z}) \right]$$

We can think of it as an (intractable) expectation. Monte Carlo to the rescue:

- 1. Sample  $\mathbf{z}^{(1)}, \cdots, \mathbf{z}^{(k)}$  uniformly at random
- 2. Approximate expectation with sample average

$$\sum_{\mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z}) \approx |\mathcal{Z}| \frac{1}{k} \sum_{j=1}^{k} p_{\theta}(\mathbf{x}, \mathbf{z}^{(j)})$$

Works in theory but not in practice. For most z,  $p_{\theta}(x, z)$  is very low (most completions don't make sense). Some are very large but will never "hit" likely completions by uniform random sampling. Need a clever way to select  $z^{(j)}$  to reduce variance of the estimator.

#### Second attempt: Importance Sampling

Likelihood function  $p_{\theta}(\mathbf{x})$  for Partially Observed Data is hard to compute:

$$p_{\theta}(\mathbf{x}) = \sum_{\text{All possible values of } \mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z} \in \mathcal{Z}} \frac{q(\mathbf{z})}{q(\mathbf{z})} p_{\theta}(\mathbf{x}, \mathbf{z}) = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[ \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right]$$

Monte Carlo to the rescue:

- 1. Sample  $\mathbf{z}^{(1)}, \cdots, \mathbf{z}^{(k)}$  from  $q(\mathbf{z})$
- 2. Approximate expectation with sample average

$$p_{ heta}(\mathbf{x}) pprox rac{1}{k} \sum_{j=1}^k rac{p_{ heta}(\mathbf{x}, \mathbf{z}^{(j)})}{q(\mathbf{z}^{(j)})}$$

What is a good choice for q(z)? Intuitively, choose likely completions. It would then be tempting to estimate the *log*-likelihood as:

$$\log\left(p_{\theta}(\mathbf{x})\right) \approx \log\left(\frac{1}{k}\sum_{j=1}^{k}\frac{p_{\theta}(\mathbf{x}, \mathbf{z}^{(j)})}{q(\mathbf{z}^{(j)})}\right) \stackrel{k=1}{\approx} \log\left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z}^{(1)})}{q(\mathbf{z}^{(1)})}\right)$$

However, it's clear that  

$$\mathbb{E}_{\mathbf{z}^{(1)} \sim q(\mathbf{z})} \left[ \log \left( \frac{p_{\theta}(\mathbf{x}, \mathbf{z}^{(1)})}{q(\mathbf{z}^{(1)})} \right) \right] \neq \log \left( \mathbb{E}_{\mathbf{z}^{(1)} \sim q(\mathbf{z})} \left[ \frac{p_{\theta}(\mathbf{x}, \mathbf{z}^{(1)})}{q(\mathbf{z}^{(1)})} \right] \right)$$
19/2

#### **Evidence Lower Bound**

Log-Likelihood function for Partially Observed Data is hard to compute:  $\log\left(\sum_{\mathbf{z}\in\mathcal{Z}}p_{\theta}(\mathbf{x},\mathbf{z})\right) = \log\left(\sum_{\mathbf{z}\in\mathcal{Z}}\frac{q(\mathbf{z})}{q(\mathbf{z})}p_{\theta}(\mathbf{x},\mathbf{z})\right) = \log\left(\mathbb{E}_{\mathbf{z}\sim q(\mathbf{z})}\left[\frac{p_{\theta}(\mathbf{x},\mathbf{z})}{q(\mathbf{z})}\right]\right)$ 

- log() is a concave function.  $log(px + (1-p)x') \ge p \log(x) + (1-p) \log(x').$
- Idea: use Jensen Inequality (for concave functions)

$$\log \left( \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[ f(\mathbf{z}) \right] \right) = \log \left( \sum_{\mathbf{z}} q(\mathbf{z}) f(\mathbf{z}) \right) \ge \sum_{\mathbf{z}} q(\mathbf{z}) \log f(\mathbf{z})$$

#### **Evidence Lower Bound**

Log-Likelihood function for Partially Observed Data is hard to compute:  $\log\left(\sum_{\mathbf{z}\in\mathcal{Z}}p_{\theta}(\mathbf{x},\mathbf{z})\right) = \log\left(\sum_{\mathbf{z}\in\mathcal{Z}}\frac{q(\mathbf{z})}{q(\mathbf{z})}p_{\theta}(\mathbf{x},\mathbf{z})\right) = \log\left(\mathbb{E}_{\mathbf{z}\sim q(\mathbf{z})}\left[\frac{p_{\theta}(\mathbf{x},\mathbf{z})}{q(\mathbf{z})}\right]\right)$ 

- log() is a concave function.  $log(px + (1-p)x') \ge p \log(x) + (1-p) \log(x').$
- Idea: use Jensen Inequality (for concave functions)

$$\log\left(\mathbb{E}_{\mathsf{z}\sim q(\mathsf{z})}\left[f(\mathsf{z})\right]\right) = \log\left(\sum_{\mathsf{z}} q(\mathsf{z})f(\mathsf{z})\right) \geq \sum_{\mathsf{z}} q(\mathsf{z})\log f(\mathsf{z})$$

Choosing  $f(\mathbf{z}) = \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}$  $\log\left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}\left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}\right]\right) \ge \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}\left[\log\left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}\right)\right]$ 

Called Evidence Lower Bound (ELBO).

#### Variational inference

- Suppose q(z) is **any** probability distribution over the hidden variables
- Evidence lower bound (ELBO) holds for any q

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \left( \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right)$$
$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) - \sum_{\mathbf{z}} q(\mathbf{z}) \log q(\mathbf{z})$$

Entropy H(q) of q

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) + H(q)$$

• Equality holds if  $q = p(\mathbf{z}|\mathbf{x}; \theta)$ 

$$\log p(\mathbf{x}; \theta) = \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

• (Aside: This is what we compute in the E-step of the EM algorithm)

# Why is the bound tight

• We derived this lower bound that holds holds for any choice of q(z):

$$\log p(\mathbf{x}; heta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}; heta)}{q(\mathbf{z})}$$

• If  $q(\mathbf{z}) = p(\mathbf{z}|\mathbf{x}; \theta)$  the bound becomes:

$$\sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x};\theta) \log \frac{p(\mathbf{x},\mathbf{z};\theta)}{p(\mathbf{z}|\mathbf{x};\theta)} = \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x};\theta) \log \frac{p(\mathbf{z}|\mathbf{x};\theta)p(\mathbf{x};\theta)}{p(\mathbf{z}|\mathbf{x};\theta)}$$
$$= \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x};\theta) \log p(\mathbf{x};\theta)$$
$$= \log p(\mathbf{x};\theta) \underbrace{\sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x};\theta)}_{=1}$$
$$= \log p(\mathbf{x};\theta)$$

- Confirms our previous importance sampling intuition: we should choose likely completions.
- What if the posterior  $p(\mathbf{z}|\mathbf{x}; \theta)$  is intractable to compute? 23/28

#### Variational inference continued

- Suppose  $q(\mathbf{z})$  is **any** probability distribution over the hidden variables. A little bit of algebra reveals  $D_{KL}(q(\mathbf{z}) || p(\mathbf{z} | \mathbf{x}; \theta)) = -\sum_{k} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + \log p(\mathbf{x}; \theta) - H(q) \ge 0$
- Rearranging, we re-derived the **Evidence lower bound** (ELBO)

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

• Equality holds if  $q = p(\mathbf{z}|\mathbf{x}; \theta)$  because  $D_{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}; \theta)) = 0$ 

$$\log p(\mathbf{x}; \theta) = \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

In general, log p(x; θ) = ELBO + D<sub>KL</sub>(q(z)||p(z|x; θ)). The closer q(z) is to p(z|x; θ), the closer the ELBO is to the true log-likelihood

#### The Evidence Lower bound



- What if the posterior p(z|x; θ) is intractable to compute?
- Suppose q(z; φ) is a (tractable) probability distribution over the hidden variables parameterized by φ (variational parameters). For example, a Gaussian with mean and covariance specified by φ

$$q(\mathbf{z};\phi) = \mathcal{N}(\phi_1,\phi_2)$$

• Variational inference: pick  $\phi$  so that  $q(\mathbf{z}; \phi)$  is as close as possible to  $p(\mathbf{z}|\mathbf{x}; \theta)$ . In the figure, the posterior  $p(\mathbf{z}|\mathbf{x}; \theta)$  (blue) is better approximated by  $\mathcal{N}(2, 2)$  (orange) than  $\mathcal{N}(-4, 0.75)$  (green) 25 / 28

#### A variational approximation to the posterior



- Assume p(x<sup>top</sup>, x<sup>bottom</sup>; θ) assigns high probability to images that look like digits. In this example, we assume z = x<sup>top</sup> are unobserved (latent)
- Suppose q(x<sup>top</sup>; φ) is a (tractable) probability distribution over the hidden variables (missing pixels in this example) x<sup>top</sup> parameterized by φ (variational parameters)

$$q(\mathbf{x}^{top};\phi) = \prod_{i=1}^{top} (\phi_i)^{\mathbf{x}_i^{top}} (1-\phi_i)^{(1-\mathbf{x}_i^{top})}$$

unobserved variables  $\mathbf{x}_{i}^{top}$ 

- Is φ<sub>i</sub> = 0.5 ∀i a good approximation to the posterior p(x<sup>top</sup>|x<sup>bottom</sup>; θ)? No
- Is φ<sub>i</sub> = 1 ∀i a good approximation to the posterior p(x<sup>top</sup>|x<sup>bottom</sup>; θ)? No

#### The Evidence Lower bound



 $\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi)) = \underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}}$   $= \mathcal{L}(\mathbf{x}; \theta, \phi) + D_{\mathcal{KL}}(q(\mathbf{z}; \phi) || p(\mathbf{z} | \mathbf{x}; \theta))$ 

The better  $q(\mathbf{z}; \phi)$  can approximate the posterior  $p(\mathbf{z}|\mathbf{x}; \theta)$ , the smaller  $D_{KL}(q(\mathbf{z}; \phi)||p(\mathbf{z}|\mathbf{x}; \theta))$  we can achieve, the closer ELBO will be to log  $p(\mathbf{x}; \theta)$ . Next: jointly optimize over  $\theta$  and  $\phi$  to maximize the ELBO over a dataset

- Latent Variable Models Pros:
  - Easy to build flexible models
  - Suitable for unsupervised learning
- Latent Variable Models Cons:
  - Hard to evaluate likelihoods
  - Hard to train via maximum-likelihood
  - Fundamentally, the challenge is that posterior inference
     p(z | x) is hard. Typically requires variational approximations
- Alternative: give up on KL-divergence and likelihood (GANs)