Deep Generative Models
 Lecture 5: Latent Variable Models

Aditya Grover

UCLA

Recap of last lecture

1. Autoregressive models:

- Chain rule based factorization is fully general
- Compact representation via conditional independence and/or neural parameterizations

2. Pros:

- Easy to evaluate likelihoods
- Easy to train

3. Cons:

- Requires an ordering
- Generation is sequential
- Cannot learn features in an unsupervised way

Plan for today

1. Latent Variable Models

- Mixture models
- Variational autoencoder
- Variational inference and learning

Latent Variable Models: Motivation

1. Lots of variability in images x due to gender, eye color, hair color, pose, etc. However, unless images are annotated, these factors of variation are not explicitly available (latent).
2. Idea: explicitly model these factors using latent variables \mathbf{z}

Latent Variable Models: Motivation

1. Only shaded variables \mathbf{x} are observed in the data (pixel values)
2. Latent variables \mathbf{z} correspond to high level features

- If \mathbf{z} chosen properly, $p(\mathbf{x} \mid \mathbf{z})$ could be much simpler than $p(\mathbf{x})$
- If we had trained this model, then we could identify features via $p(\mathbf{z} \mid \mathbf{x})$, e.g., $p($ EyeColor $=$ Blue $\mid \mathbf{x})$

3. Challenge: Very difficult to specify these conditionals by hand

Deep Latent Variable Models

- Use neural networks to model the conditionals (deep latent variable models):

$$
\text { 1. } \mathbf{z} \sim \mathcal{N}(0, I)
$$

2. $p(\mathbf{x} \mid \mathbf{z})=\mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})\right)$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks

- Hope that after training, \mathbf{z} will correspond to meaningful latent factors of variation (features). Unsupervised representation learning.
- As before, features can be computed via $p(\mathbf{z} \mid \mathbf{x})$

Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians. Bayes net: $\mathbf{z} \rightarrow \mathbf{x}$.

1. $\mathbf{z} \sim$ Categorical $(1, \cdots, K)$
2. $p(\mathbf{x} \mid \mathbf{z}=k)=\mathcal{N}\left(\mu_{k}, \Sigma_{k}\right)$

Generative process

1. Pick a mixture component k by sampling z
2. Generate a data point by sampling from that Gaussian

Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians:

1. $\mathbf{z} \sim \operatorname{Categorical}(1, \cdots, K)$
2. $p(\mathbf{x} \mid \mathbf{z}=k)=\mathcal{N}\left(\mu_{k}, \Sigma_{k}\right)$

- Clustering: The posterior $p(\mathbf{z} \mid \mathbf{x})$ identifies the mixture component
- Unsupervised learning: We are hoping to learn from unlabeled data (ill-posed problem)

Unsupervised learning

Unsupervised learning

Shown is the posterior probability that a data point was generated by the i-th mixture component, $P(z=i \mid x)$

Unsupervised learning

Unsupervised clustering of handwritten digits.

Mixture models

Alternative motivation: Combine simple models into a more complex and expressive one

$$
p(\mathbf{x})=\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})=\sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z})=\sum_{k=1}^{K} p(\mathbf{z}=k) \underbrace{\mathcal{N}\left(\mathbf{x} ; \mu_{k}, \Sigma_{k}\right)}_{\text {component }}
$$

Variational Autoencoder

A mixture of an infinite number of Gaussians:

1. $\mathbf{z} \sim \mathcal{N}(0, I)$
2. $p(\mathbf{x} \mid \mathbf{z})=\mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})\right)$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks

- $\mu_{\theta}(\mathbf{z})=\sigma(A \mathbf{z}+c)=\left(\sigma\left(a_{1} \mathbf{z}+c_{1}\right), \sigma\left(a_{2} \mathbf{z}+c_{2}\right)\right)=\left(\mu_{1}(\mathbf{z}), \mu_{2}(\mathbf{z})\right)$
- $\Sigma_{\theta}(\mathbf{z})=\operatorname{diag}(\exp (\sigma(B \mathbf{z}+d)))=\left(\begin{array}{c}\exp \left(\sigma\left(b_{1} \mathbf{z}+d_{1}\right)\right) \\ 0\end{array} \underset{\exp \left(\sigma\left(b_{2} \mathbf{z}+d_{2}\right)\right)}{0}\right)$
- $\theta=(A, B, c, d)$

3. Even though $p(\mathbf{x} \mid \mathbf{z})$ is simple, the marginal $p(\mathbf{x})$ is very complex/flexible

Recap

- Latent Variable Models
- Allow us to define complex models $p(\mathbf{x})$ in terms of simpler building blocks $p(\mathbf{x} \mid \mathbf{z})$
- Natural for unsupervised learning tasks (clustering, unsupervised representation learning, etc.)
- No free lunch: much more difficult to learn compared to fully observed, autoregressive models

Marginal Likelihood

- Suppose some pixel values are missing at train time (e.g., top half)
- Let \mathbf{X} denote observed random variables, and \mathbf{Z} the unobserved ones (also called hidden or latent)
- Suppose we have a model for the joint distribution (e.g., PixelCNN)

$$
p(\mathbf{X}, \mathbf{Z} ; \theta)
$$

What is the probability $p(\mathbf{X}=\overline{\mathbf{x}} ; \theta)$ of observing a training data point $\overline{\mathbf{x}}$?

$$
\sum_{\mathbf{z}} p(\mathbf{X}=\overline{\mathbf{x}}, \mathbf{Z}=\mathbf{z} ; \theta)=\sum_{\mathbf{z}} p(\overline{\mathbf{x}}, \mathbf{z} ; \theta)
$$

- Need to consider all possible ways to complete the image (fill green part)

Variational Autoencoder Marginal Likelihood

A mixture of an infinite number of Gaussians:

1. $\mathbf{z} \sim \mathcal{N}(0, I)$
2. $p(\mathbf{x} \mid \mathbf{z})=\mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})\right)$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
3. \mathbf{Z} are unobserved at train time (also called hidden or latent)
4. Suppose we have a model for the joint distribution. What is the probability $p(\mathbf{X}=\overline{\mathbf{x}} ; \theta)$ of observing a training data point $\overline{\mathrm{x}}$?

$$
\int_{\mathbf{z}} p(\mathbf{X}=\overline{\mathbf{x}}, \mathbf{Z}=\mathbf{z} ; \theta) d \mathbf{z}=\int_{\mathbf{z}} p(\overline{\mathbf{x}}, \mathbf{z} ; \theta) d \mathbf{z}
$$

Partially observed data

- Suppose that our joint distribution is

$$
p(\mathbf{X}, \mathbf{Z} ; \theta)
$$

- We have a dataset \mathcal{D}, where for each datapoint the \mathbf{X} variables are observed (e.g., pixel values) and the variables \mathbf{Z} are never observed (e.g., cluster or class id.). $\mathcal{D}=\left\{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(M)}\right\}$.
- Maximum likelihood learning:

$$
\log \prod_{\mathbf{x} \in \mathcal{D}} p(\mathbf{x} ; \theta)=\sum_{\mathbf{x} \in \mathcal{D}} \log p(\mathbf{x} ; \theta)=\sum_{\mathbf{x} \in \mathcal{D}} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} ; \theta)
$$

- Evaluating $\log \sum_{z} p(\mathbf{x}, \mathbf{z} ; \theta)$ can be intractable. Suppose we have 30 binary latent features, $\mathbf{z} \in\{0,1\}^{30}$. Evaluating $\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} ; \theta)$ involves a sum with 2^{30} terms. For continuous variables, $\log \int_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} ; \theta) d \mathbf{z}$ is often intractable. Gradients ∇_{θ} also hard to compute.
- Need approximations. One gradient evaluation per training data point $\mathbf{x} \in \mathcal{D}$, so approximation needs to be cheap.

First attempt: Naive Monte Carlo

Likelihood function $p_{\theta}(\mathbf{x})$ for Partially Observed Data is hard to compute:

$$
p_{\theta}(\mathbf{x})=\sum_{\text {All values of } \mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z})=|\mathcal{Z}| \sum_{\mathbf{z} \in \mathcal{Z}} \frac{1}{|\mathcal{Z}|} p_{\theta}(\mathbf{x}, \mathbf{z})=|\mathcal{Z}| \mathbb{E}_{\mathbf{z} \sim \text { Uniform }(\mathcal{Z})}\left[p_{\theta}(\mathbf{x}, \mathbf{z})\right]
$$

We can think of it as an (intractable) expectation. Monte Carlo to the rescue:

1. Sample $\mathbf{z}^{(1)}, \cdots, \mathbf{z}^{(k)}$ uniformly at random
2. Approximate expectation with sample average

$$
\sum_{\mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z}) \approx|\mathcal{Z}| \frac{1}{k} \sum_{j=1}^{k} p_{\theta}\left(\mathbf{x}, \mathbf{z}^{(j)}\right)
$$

Works in theory but not in practice. For most $\mathbf{z}, p_{\theta}(\mathbf{x}, \mathbf{z})$ is very low (most completions don't make sense). Some are very large but will never "hit" likely completions by uniform random sampling. Need a clever way to select $\mathbf{z}^{(j)}$ to reduce variance of the estimator.

Second attempt: Importance Sampling

Likelihood function $p_{\theta}(\mathbf{x})$ for Partially Observed Data is hard to compute:

$$
p_{\theta}(\mathbf{x})=\sum_{\text {All possible values of } \mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z})=\sum_{\mathbf{z} \in \mathcal{Z}} \frac{q(\mathbf{z})}{q(\mathbf{z})} p_{\theta}(\mathbf{x}, \mathbf{z})=\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}\left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}\right]
$$

Monte Carlo to the rescue:

1. Sample $\mathbf{z}^{(1)}, \cdots, \mathbf{z}^{(k)}$ from $q(\mathbf{z})$
2. Approximate expectation with sample average

$$
p_{\theta}(\mathbf{x}) \approx \frac{1}{k} \sum_{j=1}^{k} \frac{p_{\theta}\left(\mathbf{x}, \mathbf{z}^{(j)}\right)}{q\left(\mathbf{z}^{(j)}\right)}
$$

What is a good choice for $q(\mathbf{z})$? Intuitively, choose likely completions. It would then be tempting to estimate the log-likelihood as:

$$
\log \left(p_{\theta}(\mathbf{x})\right) \approx \log \left(\frac{1}{k} \sum_{j=1}^{k} \frac{p_{\theta}\left(\mathbf{x}, \mathbf{z}^{(j)}\right)}{q\left(\mathbf{z}^{(j)}\right)}\right) \stackrel{k=1}{\approx} \log \left(\frac{p_{\theta}\left(\mathbf{x}, \mathbf{z}^{(1)}\right)}{q\left(\mathbf{z}^{(1)}\right)}\right)
$$

However, it's clear that

$$
\mathbb{E}_{\mathbf{z}^{(1)} \sim q(\mathbf{z})}\left[\log \left(\frac{p_{\theta}\left(\mathbf{x}, \mathbf{Z}^{(1)}\right)}{q\left(\mathbf{z}^{(1)}\right)}\right)\right] \neq \log \left(\mathbb{E}_{\mathbf{z}^{(1)} \sim q(\mathbf{z})}\left[\frac{p_{\theta}\left(\mathbf{x}, \mathbf{z}^{(1)}\right)}{q\left(\mathbf{Z}^{(1)}\right)}\right]\right)
$$

Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:
$\log \left(\sum_{\mathbf{z} \in \mathcal{Z}} p_{\theta}(\mathbf{x}, \mathbf{z})\right)=\log \left(\sum_{\mathbf{z} \in \mathcal{Z}} \frac{q(\mathbf{z})}{q(\mathbf{z})} p_{\theta}(\mathbf{x}, \mathbf{z})\right)=\log \left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}\left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}\right]\right)$

- $\log ()$ is a concave function.

$$
\log \left(p x+(1-p) x^{\prime}\right) \geq p \log (x)+(1-p) \log \left(x^{\prime}\right)
$$

- Idea: use Jensen Inequality (for concave functions)

Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:

$$
\log \left(\sum_{\mathbf{z} \in \mathcal{Z}} p_{\theta}(\mathbf{x}, \mathbf{z})\right)=\log \left(\sum_{\mathbf{z} \in \mathcal{Z}} \frac{q(\mathbf{z})}{q(\mathbf{z})} p_{\theta}(\mathbf{x}, \mathbf{z})\right)=\log \left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}\left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}\right]\right)
$$

- $\log ()$ is a concave function.

$$
\log \left(p x+(1-p) x^{\prime}\right) \geq p \log (x)+(1-p) \log \left(x^{\prime}\right)
$$

- Idea: use Jensen Inequality (for concave functions)

$$
\log \left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}[f(\mathbf{z})]\right)=\log \left(\sum_{\mathbf{z}} q(\mathbf{z}) f(\mathbf{z})\right) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log f(\mathbf{z})
$$

Choosing $f(\mathbf{z})=\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}$

$$
\log \left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}\left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}\right]\right) \geq \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}\left[\log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}\right)\right]
$$

Called Evidence Lower Bound (ELBO).

Variational inference

- Suppose $q(z)$ is any probability distribution over the hidden variables
- Evidence lower bound (ELBO) holds for any q

$$
\begin{aligned}
\log p(\mathbf{x} ; \theta) & \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}\right) \\
& =\sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z})-\underbrace{\sum_{\mathbf{z}} q(\mathbf{z}) \log q(\mathbf{z})}_{\text {Entropy } H(q) \text { of } q} \\
& =\sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z})+H(q)
\end{aligned}
$$

- Equality holds if $q=p(\mathbf{z} \mid \mathbf{x} ; \theta)$

$$
\log p(\mathbf{x} ; \theta)=\sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x} ; \theta)+H(q)
$$

- (Aside: This is what we compute in the E-step of the EM algorithm)

Why is the bound tight

- We derived this lower bound that holds holds for any choice of $q(\mathbf{z})$:

$$
\log p(\mathbf{x} ; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z} ; \theta)}{q(\mathbf{z})}
$$

- If $q(\mathbf{z})=p(\mathbf{z} \mid \mathbf{x} ; \theta)$ the bound becomes:

$$
\begin{aligned}
\sum_{\mathbf{z}} p(\mathbf{z} \mid \mathbf{x} ; \theta) \log \frac{p(\mathbf{x}, \mathbf{z} ; \theta)}{p(\mathbf{z} \mid \mathbf{x} ; \theta)} & =\sum_{\mathbf{z}} p(\mathbf{z} \mid \mathbf{x} ; \theta) \log \frac{p(\mathbf{z} \mid \mathbf{x} ; \theta) p(\mathbf{x} ; \theta)}{p(\mathbf{z} \mid \mathbf{x} ; \theta)} \\
& =\sum_{\mathbf{z}} p(\mathbf{z} \mid \mathbf{x} ; \theta) \log p(\mathbf{x} ; \theta) \\
& =\log p(\mathbf{x} ; \theta) \underbrace{\sum_{\mathbf{z}} p(\mathbf{z} \mid \mathbf{x} ; \theta)}_{=1} \\
& =\log p(\mathbf{x} ; \theta)
\end{aligned}
$$

- Confirms our previous importance sampling intuition: we should choose likely completions.
- What if the posterior $p(\mathbf{z} \mid \mathbf{x} ; \theta)$ is intractable to compute?

Variational inference continued

- Suppose $q(\mathbf{z})$ is any probability distribution over the hidden variables. A little bit of algebra reveals

$$
D_{K L}(q(\mathbf{z}) \| p(\mathbf{z} \mid \mathbf{x} ; \theta))=-\sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x} ; \theta)+\log p(\mathbf{x} ; \theta)-H(q) \geq 0
$$

- Rearranging, we re-derived the Evidence lower bound (ELBO)

$$
\log p(\mathbf{x} ; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x} ; \theta)+H(q)
$$

- Equality holds if $q=p(z \mid \mathbf{x} ; \theta)$ because

$$
\begin{aligned}
D_{K L}(q(\mathbf{z}) \| p(\mathbf{z} \mid \mathbf{x} ; \theta)) & =0 \\
\log p(\mathbf{x} ; \theta) & =\sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x} ; \theta)+H(q)
\end{aligned}
$$

- In general, $\log p(\mathbf{x} ; \theta)=\mathrm{ELBO}+D_{K L}(q(\mathbf{z}) \| p(\mathbf{z} \mid \mathbf{x} ; \theta))$. The closer $q(\mathbf{z})$ is to $p(\mathbf{z} \mid \mathbf{x} ; \theta)$, the closer the ELBO is to the true log-likelihood

The Evidence Lower bound

- What if the posterior $p(\mathbf{z} \mid \mathbf{x} ; \theta)$ is intractable to compute?
- Suppose $q(\mathbf{z} ; \phi)$ is a (tractable) probability distribution over the hidden variables parameterized by ϕ (variational parameters). For example, a Gaussian with mean and covariance specified by ϕ

$$
q(\mathbf{z} ; \phi)=\mathcal{N}\left(\phi_{1}, \phi_{2}\right)
$$

- Variational inference: pick ϕ so that $q(\mathbf{z} ; \phi)$ is as close as possible to $p(\mathbf{z} \mid \mathbf{x} ; \theta)$. In the figure, the posterior $p(\mathbf{z} \mid \mathbf{x} ; \theta)$ (blue) is better approximated by $\mathcal{N}(2,2)$ (orange) than $\mathcal{N}(-4,0.75)$ (green)

A variational approximation to the posterior

- Assume $p\left(\mathbf{x}^{\text {top }}, \mathbf{x}^{\text {bottom }} ; \theta\right)$ assigns high probability to images that look like digits. In this example, we assume $\mathbf{z}=\mathbf{x}^{\text {top }}$ are unobserved (latent)
- Suppose $q\left(\mathbf{x}^{\text {top }} ; \phi\right)$ is a (tractable) probability distribution over the hidden variables (missing pixels in this example) $\mathbf{x}^{\text {top }}$ parameterized by ϕ (variational parameters)

$$
q\left(\mathbf{x}^{\text {top }} ; \phi\right)=\prod_{\text {unobserved variables } \mathbf{x}_{i}^{\text {top }}}\left(\phi_{i}\right)^{\mathbf{x}_{i}^{\text {top }}}\left(1-\phi_{i}\right)^{\left(1-\mathbf{x}_{i}^{\text {top }}\right)}
$$

- Is $\phi_{i}=0.5 \forall i$ a good approximation to the posterior $p\left(\mathbf{x}^{\text {top }} \mid \mathbf{x}^{\text {bottom }} ; \theta\right)$? No
- Is $\phi_{i}=1 \forall i$ a good approximation to the posterior $p\left(\mathbf{x}^{\text {top }} \mid \mathbf{x}^{\text {bottom }} ; \theta\right)$? No

The Evidence Lower bound

$$
\begin{aligned}
\log p(\mathbf{x} ; \theta) & \geq \sum_{\mathbf{z}} q(\mathbf{z} ; \phi) \log p(\mathbf{z}, \mathbf{x} ; \theta)+H(q(\mathbf{z} ; \phi))=\underbrace{\mathcal{L}(\mathbf{x} ; \theta, \phi)}_{\mathrm{ELBO}} \\
& =\mathcal{L}(\mathbf{x} ; \theta, \phi)+D_{K L}(q(\mathbf{z} ; \phi) \| p(\mathbf{z} \mid \mathbf{x} ; \theta))
\end{aligned}
$$

The better $q(\mathbf{z} ; \phi)$ can approximate the posterior $p(\mathbf{z} \mid \mathbf{x} ; \theta)$, the smaller $D_{K L}(q(\mathbf{z} ; \phi) \| p(\mathbf{z} \mid \mathbf{x} ; \theta))$ we can achieve, the closer ELBO will be to $\log p(\mathbf{x} ; \theta)$. Next: jointly optimize over θ and ϕ to maximize the ELBO over a dataset

Summary

- Latent Variable Models Pros:
- Easy to build flexible models
- Suitable for unsupervised learning
- Latent Variable Models Cons:
- Hard to evaluate likelihoods
- Hard to train via maximum-likelihood
- Fundamentally, the challenge is that posterior inference $p(\mathbf{z} \mid \mathbf{x})$ is hard. Typically requires variational approximations
- Alternative: give up on KL-divergence and likelihood (GANs)

